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A RELATIVE MOD (H,K) NIELSEN NUMBER

HyaNG KaM CHO AND Moo Ha Woo

1. Introduction

Let X be a compact polyhedron, H a normal subgroup of the fun-
damental group m1(X) of X and f : X — X a selfmap such that
f=H C H, where f : 71(X) — m1(X) is the induced homomorphism
by f. In the study of the fixed point theory for a map, the Nielsen
number N(f) gives geometric informations about the number of fixed
points. However, it is not easy to compute the Nielsen number in gen-
eral. In an effort to compute the Nielsen number, B.J. Jiang [4] was
able to relate the Nielsen number to the mod H Nielsen number Ng( f)
which is a lower bound for N(f).

For a pair map f : (X,4) — (X, A) of compact connected poly-
hedra, H. Schirmer [6] defined the relative Nielsen number N(f; X, A)
as a generalization of the Nielsen number. Then a natural question
is, for the above pair map f, the existence of any concept of the rela-
tive Nielsen number modulo a normal subgroup as a generalization of
the mod H Nielsen number. In this paper, we seek a solution of this
question.

In §2, we give the defininition of the relative mod (H, K') Nielsen
number N (f; X, A) and show that the mod H Nielsen number N a(f)
is a lower bound for the relative mod (H, K') Nielsen number
NE(f; X, A).

In §3, we show that the relative mod (H, K) Nielsen number
NH(f; X, A) has some basic properties, namely (the lower bound prop-

erty) the homotopy invariance, the commutativity and the homotopy
type invariance.
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In §4, we compute the relative mod (H, K) Nielsen number
NZ(f; X, A) under certain resrictions and give some examples.

Now let f : X — X be a selfmap of a compact polyhedron, H; and
H; (not necessarily trivial ) normal subgroups of 71(X) such that H,
is a subgroup of H; and frH; C H; for j = 1,2. It is well known
that Nu,(f) < N(f) = Nqj(f), where {1} is the trivial subgroup of
71(X). T.H. Kiang [5] showed that the inequality Nu,(f) < Nu,(f)
holds under certain restrictions.

In §5, we have the inequality Nﬁl‘(f;X,A) < N{\{:(f; X, A) which
is analogous to Ny, (f) < Np,(f)under certain restrictions. Finally,
for two series of normal subgroups of the fundamental groups, we show
that the inequality for the relative Nielsen number modulo a normal
subgroup holds under certain restrictions.

2. Definitions

If f:(X,A) — (X, A) is a pair map of compact connected polyhe-
dra, then we shall write f : A — A for the restriction of the pair map
f to A, write f : X — X if the condition that f(A) C A is imma-
terial and write 7 : 4 — X for the inclusion map. The homotopies of
f:(X,A) = (X, A) are maps of the form H : (X x [,AxI)— (X, A)
and the homotopies of f : X — X are maps of theform H : X xI — X,
where [ is the unit interval. Throughout this paper, we always assume
that all spaces are connected.

Let ir : m(A) = m(X), fr : m1(4) = m(A) and fr : m(X) —
m1(X) be the induced homomorphisms. If H is a normal subgroup
of 71(X) and K is a normal subgroup of 71(A4) such that i K C H,
frK C K and frH C H, then from the following commutative diagram
of a morphism of selfmaps

f
X — X,

we recall the category of selfmaps with a normal subgroup and the
fixed - point - class data FPCy(f) which is the weighted set of con-
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jugacy classes of liftings fy : )A(:/H — X/H of f, the weight of a class
[f#] being the index of the mod H fixed point class py FPC(fu). (See
Definition 2.14 and 2.15 of Chap. Il in [4].) Sincei: A — X is a
morphism in the category of selfmaps with a normal subgroup, from
f:A— Awith K to f: X — X with H, we have a correspondence
z(H KyFpc  FPCk(f) — FPCy(f). (See Theorem 2.16 of Chap. III
in [4].)

Thus we know the fact that every mod A fixed point class of f :
A — A is contained in a mod H fixed point class of f: X — X.

In this paper, for a pair map f : (X, 4) — (X, A) of compact poly-
hedra, we always assume that H is a normal subgroup of 7;(X) and
K is a normal subgroup of 71(A) such that i, K C H, fK C K and
f=H CH.

Now for a pair map f : (X, 4) — (X, A) of compact polyhedra,
recall the definition of an essential common fixed point class of f and
f. (See [6].) A fixed point class F of f : X — X is a common fixed
point class of f and f if F' contains an essential ordinary fixed point
class of f A — A. 1t is called an essential common fixed point class of
f and f if it is an essential or dinary fixed point class of f and common
fixed point class of f and f. The number of essential common fixed
point classes of f and f is denoted by N(f; f).

DEFINITION 2.1. Let f: (X, A4) — (X, A) be a pair map of compact
polyhedra. A mod H fixed point class Fy of f: X — X is a common
mod (H,K) fized point class of f and f if Fy contains an essential
mod K fixed point class of f. It is an essential common mod (H,K)
fized point class of f and f if it is an essential mod H fixed point class
of f and a common mod (H, ) fixed point class of f and f.

We write N( f; f) for the number of essential common mod (H,I)
fixed point classes of f and f. Clearly NH(f; f) is a finite nonnegative
integer.

Especially, if we choose the trivial subgroup {1} as a normal sub-
group of m;(A), then we have an essential cornmon mod (H, {1}) fixed
point class of f and f and we shall write the number N{l}(f f) of essen-

tial common mod (H, {1}) fixed point classes of f and f for N¥(f; f).
In fact, N(f; f) is the number of essential common mod ({1}, {1})
fixed point classes of f and f



374 Hyang Kam Cho and Moo Ha Woo

REMARK 2.2. It is easy to show that 0 < NE(f; f) < NH(f; ) <
N(f; f). ¥ fxK C J(f), where J(f) is the Jiang subgroup of f: A —
A, then any two ordinary fixed point classes of f: A — A in a given
mod K fixed point class of f have the same index (See Theorem 2.11
of Chap. III of [4].) and hence a common mod (H, K) fixed point class
of f and f coincides with a common mod (H, {1}) fixed point class of

f and f.

For a pair map f : (X,A) — (X, A) of compact polyhedra, the
relative Nielsen number N(f; X, A) is defined by N(f; X, A) = N(f)+
N(f) = N(f; f)- (See[6].)

DEFINITION 2.3. Let f: (X, A4) — (X, A) be a pair map of compact
polyhedra. A relative mod (H,K) Nielsen number NF(f; X, A) of f
(and f) is defined by NE(f; X, A) = Nu(f) + Nx(f) - NE(; f).

Hence N (f; X, A) is a finite nonnegative integer.

Especially, if we choose the trivial subgroup {1} as a normal sub-
group of 71(A), then we have the relative mod ( H, {1}) Nielsen number
Nﬁ}(f;X,A) and we denote it by N7 (f; X, A).

In fact, the relative Nielsen number N(f; X, A) is the relative mod

({1}, {1}) Nielsen number N{{ll}}(f;X, A). (See [6].)

If X = A, then we have N}(f; X, A) = Ni(f) when K is a sub-
group of H and NH(f; X, A) = N(f).

If A =0, then we have N¥(f; X, A) = Ny(f).

If H is the trivial subgroup {1} of m(X), then we have Ny(f) =
N(f), NB(f;f) = N(f; ) and hence N7(f;X,4) = N(f; X, A).
Similarly if K is the trivial subgroup of m;(A), then we have Ny (f) =
N(f), NE(f ) = NH(f; f) and hence NI (f; X, 4) = NH(f; X, A).

THEOREM 2.4. Let f: (X, A) — (X, A) be a pair map of compact
polyhedra. Then we have NE(f; X, A) < NH(f; X, A).

Proof. Let FY F%,-- \FL Fi ... Fp FRHl ... FIbethees-
sential mod H fixed point classes of f : X — X, where 0 < I <
m < n are positive integers. Let n = Ny(f), | = NH(f;f) and
m = NH(f; ). Andlet ¢; be the number of essential mod K fixed point
classes of f: A — A which are contained in F' }1 foreach 1 <17 <! and
let ¢ be the number of essential mod It fixed point classes of f which are
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contained in inessential mod H fixed point classes of f : X — X. Sim-
ilarly let d; be the number of essential fixed point classes of f: A — A
which are contained in F}; for each 1 < j < m and let d be the
number of essential fixed point classes of f which are contained in
inessential mod H fixed point classes of f : X — X. Then we have
N(f:) =di+dy+---+di+d+diy + - + dn. Therefore we have
Nf)zea+ea+-+emtct(m=1) =N;((f)+(m——l). Hence we
have N(f) — NH(f; f) > Ni(f) — NE(f; ). It completes the proof.

COROLLARY 2.5. If f: (X, A) — (X, A) is a pair map of compact
polyhedra, then we have N (f; X A) < N(f; X,A).

Proof. 1t is analogous to the proof of Theorem 2.4.

REMARK 2.6. It is well known that N(f) is a lower bound for the
relative Nielsen number N(f; X, 4). From the definition of the rela-
tive mod (H, K') Nielsen number N (f; X, A), we obtain the fact that
Nu(f) is a lower bound for NJ/(f; X, A). Thus we have Ny(f) <
NE(f; X, A) < NY(F, X, 4) < N(f; X, A) by Theorem 2.4 and Corol-
lary 2.5.

THEOREM 2.7. Let f : (X, A) — (X, 4) be a pair map of compact
polyhedra.

(i) If Nx(f) =0, then NJ(f; X, A) = Ny(f).

(ii) FN(f) = 0, then Nf{(f; X, A) = N¥(f; X, A) = Nyu(f).

(iii) If Ng(f) = 0 or N(f) = 0, then Nf{(f; X, A) = Nk(f) and
NH(f; X, 4) = N(f).

Proof. These are obvious from the definitions.

3. Basic properties

In this section, we show that every result about the relative Nielsen
number N(f; X, A) is applied to the numbers NZ(f; X, A) and
NH(f. X, A).

THEOREM 3.1. (Theorem 2.12 of Chap. Il in [4]) Let f : X —
X be such that m(X)/H is finite. For each lifting fu : X’/H —
)Z'/H of f, the Lefschetz number L(fy) of fu is nonzero if and only
if indez(f,py FPC(fr)) is nonzero where py : . X/H — X is the

covering map corresponding to H.
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THEOREM 3.2. (Lower bound property) Let f : (X, 4) — (X,A)
be a pair map of compact polyhedra such that =(X)/H and m1(A)/K
are finite. If L(fy) - L(f ) # 0 for each lifting fy : X/H — X/H of
f X — X and each lifting J%K : ;{/K — Z/K of f: A — A, then
f:(X,A) - (X, A) has at least NH(f; X, A) fixed points.

Proof. By Theorem 3.1, there exists no inessential mod H (K) fixed
point classes of f : X — X(f: A — A). Let f: A — A have the
essential mod K fixed point classes Fy, F, - , F; and f:X — X have
the essential mod H fixed point classes F}, Fy, - s Foy, Frngr, -, Fy
which are indexed so that the essential common mod (H, K ) fixed point
classes of f and f are Fpy1, Frnqe, - , #n. Then

NRE(Fi X, A)=n+1-(n-m)
:l-+—m

Each mod K fixed point class F; contains at least one fixed point a; of f
and each mod H fixed point class F; contains at least one fixed point x;
of f. Ifj=1,2,--- ,m, then F; N A is distinct from the set of essential
mod K fixed point classes of f. So the set {ay, a2, - Jar, 21,20, -,
T} consists of | 4+ m distinct points which are all fixed points of f :
(X,4) = (X,A4)

Now throughout this section, the notation “~”(bar) on the pair map
means the restriction of the pair map to the subspace of the pair of
spaces.

THEOREM 3.3. (Homotopy invariance) Let (X, A) be a pair of com-
pact polyhedra and i : A — X be the inclusion map. Let H be a
normal subgroup of m;(X) and K be a normal subgroup of m1(A) such
that i, K C H where i, : 11(A) — 71(X) is the induced homomor-
phism. Suppose fo, f1 : (X,A) — (X, A) are homotopic such that
fo,K CK, i.K C K, fo,H C H and fi,H C H. Then we have
Nil(fo; X, 4) = NH(f1; X, 4).

Proof. 1t suffices to show that Nf(fo; fo) = NHE(f1; f1). Let G =
{96,d¢} : (X x I, A x I) = (X, A) be a homotopy from fo to fi. Let
Fy, be an essential common mod (H, K) fixed point class of fo and
fo. Then Fy,, contains an essential mod K fixed point class Fy,. of fo
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which corresponds to an essential mod K fixed point class F}, of f;
via {g¢}. Thus for every ag € Fy, and a; € Fy,, there exists a path
{a:} in A such that (a;(gi(a:))™!) € K. Now let Fy, be the mod H
fixed point class of f; which contains a;. Since a path {a;} is in X
and (a:(gi(a¢))™!) € H for ao € Foy and a1 € Fy,,, Fy, corresponds
to F1, via {g:}. Hence F}, is an essential common mod (H, K) fixed
point class of f; and f; which contains £ X

Conversely, an essential common mod (H, ) fixed point class of f;
and f; corresponds to an essential common mod (H, K) fixed point
class of fo and fo via {g;'}. Thus we have N¥(fo; o) = NE(f1; f1)
and hence N (fo; X, A) = NF(f1; X, A).

THEOREM 3.4. (Commutativity) Let (X, A) and (Y, B) be compact
polyhedral pairs. Let:: A — X, j : B — Y be the inclusions and
fi(X,A) = (Y,B) and g : (Y,B) — (X, A) be pair maps. Let H and
L' be normal subgroups of m1(X) and m1(Y’), respectively such that
fxH C L and g.L C H. And let K and M be normal subgroups of
71(A) and 7 (B), respectively such that i, K C H, j.M C L, f-K C
M and §=M C K. Then we have Nfi(go f; X yA) = Nf,,(fog;Y B).

Proof. Let Fiy be an essential common mod (H, K) fixed point class
of go f and o f. Then f(Fu) is an essential mod L fixed point class
of f o g and hence it suffices to show that f(Fy) is a common mod
(L, M) fixed point class of fog and fo§. Let Fi be an essential mod
K fixed point class of go f which is contained in Fy. Since jo f = foi,

f(Fr) is contained in f(Fy). Thus f(Fy) is a common mod (L, M)
fixed point class of fog and fo§ . Similarly if G is an essential
common mod (L, M) fixed point class of fog and fo g, then g(Gp) is
an essential common mod (H, K) fixed point class of go f and go f.
Thus this completes the proof.

Two maps of pairs of spaces f : (X,4) — (X,A) and g : (Y,B) —
(Y, B) are said to be maps of the same homotopy type if there exists a
homotopy equivalence % : (X, A) — (Y, B) so that the maps of pairs of
spaces ho f, goh: (X,A) — (Y, B) are homotopic.

THEOREM 3.5. (Homotopy type invariance) Let (X, A) and (Y, B)
be two pairs of compact polyhedra. Leti : A - X, j : B - Y
be the inclusions. Let H and L be normal subgroups of n1(X) and
m1(Y'), respectively, and let K and M be normal subgroups of m;(A)
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and mi(B), respectively such that i,K C H, j.M C L. Suppose
[ (X,A) - (X,A) and g : (Y,B) — (Y, B) are maps of the same
homotopy type which have a homotopy equivalence h : (X, A) — (Y, B)
such that heH = L, h K = M, f-H C H and fx K C K. Then we
have N (f; X,A) = Nf;(4;Y, B).

Proof. 1t is easy to see that g,L C L and §.M C M. Let k :
(Y,B) — (X, A) be the homotopy inverse of 2. Then
NE(f; X, A)
=NE((koh)f; X, A) ( Theorem 3.3 )
=N ((go h)k;Y, B) ( Theorem 3.3 and Theorem 3.4 )
=Ny (g;Y,B) ( Theorem 3.3. ).

4. Computations for some cases

In this section,we assume that f: (X, A) — (X, A) is a pair map of
compact polyhedra and we study the relative Nielsen numbers modulo
a normal subgroup for special cases and give some examples.

Now, let us consider the commutative diagram

m(A) < Hi(A) L Coker(l— f.: Hy(A) — Hy(A))
Lin | i | i
(X)) -5 Hi(X) - Coker(1-— fu: Hy(X) — Hi(X))

where 8, are abelizations and 7,7 are the natural projections.
Note that

Coker(1 — f.: Hi(X)/8(H) — Hi(X)/8(H))
=Coker(1 — f1, : Hi(X) — H(X))/n o 6(H)
and
Coker(1 — f, : Hi(A)/6(K) — H1(A)/8(K))
=Coker(1 — fi, : Hi(A) — H,(A))/7 0 (K)
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THEOREM 4.1. Let f : (X, A) — (X, A) be a pair map of compact
polyhedra.

Suppose that

(1)m1(X)/H and 7 (A)/K are finite,

(2)L(fu)- L(fi) # O for each lifting fur : X/H —» X/H of f : X —
X and each lifting f, : A/I\ —A/Kof f:4— A and ,

(3)fx(n(A)) C K - J(f) and fo(m (X)) C H - J(f) ,where J(f) and

J(f) are Jiang subgroups of f and f, respectively.
Then we have

NR(f; X, A) = #Coker(1 - f1.)/7 0 8(K)
+ #Coker(1 — f1,)/n0 6(H)
— #{1.Coker(1 - f1,)/700(K)}.

Proof. By (1) and (2), the mod K Reidemeister number Ry (f) of
f equals to Nk(f) and the mod H Reidemeister number Ry(f) of f
equals to Ny(f). And by (3), we have Nk (f) = #Coker(1 — f1,)/iio
8(K) and Ng(f) = #Coker(1 — f,, )/mo6(H). (See Theorem 2.10 of
Chap. IIl in [4].)

It suffices to show that N} (f; f) = #{i.Coker(1 — f,,)/7 0 9(1&)}
The compositions 7o 8 and 7 o 8 induce correspondences  : Vi(f) —
Coker(1—~ f1,)/708(K) , u : VH(f) = Coker{l1—f1,)/no8(H) and the
correspondences are bijective by (2), where 7 x(f) is the set of f,,y,-(—-
conjugacy classes in 71(A)/K and 7y(f) is the set of f,,,H-conjugacy
classes in m(X)/H. (See [9].) It is easy to check that the diagram

vi(f) —— Coker(1 — f1.)/7 0 8(K)

| B

vVa(f) . Coker(1l — fi,)/n o 6(H) commutes.

(See Lemma 4.5 in [10]). Let < ay > be a f, y-conjugacy class in
VH(f) which corresponds to ‘a common mod H fixed point class of f

and f. Then there exists a j,, K-conjugacy class < Br > in Vi(f)
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such that ix(< fx >) =< ag >. Since u(< ay >) = u 0 in(<
Br >) =i, ou(< Pi >) , @ and u are bijective, we get NF(f; f) =
#{i.Coker(1 — f1,)/7 0 8(K)}.

THEOREM 4.2. Suppose X is path connected and H = m1(X).

Then _
Nu(f)y if Nik(f)=0
Ni(f) if Ni(f) #0.

Proof. Let z¢ and z; be fixed points of f. Since X is path connected,
there exists a path ¢ in X from z¢ to z; such that (¢(foc)™!) € m1(X) =
H. By Theorem 2.2 of Chapt. 11l in [4], 2 and 2, belong to the same
mod H fixed point class of f: X — X. Thus Fix(f) = {z € X|f(z) =
z} is the only one mod H fixed point class of f and hence Nu(f)<1.
If Nk(f) = 0, then it is obvious from Theorem 2.7. If Ni(f) # 0,
then Ny(f) = N#(f; ). Thus we have the conclusion.

COROLLARY 4.3. If either X is simply connected or if f is homo-
topic to the identity map id : (X, A) — (X, A), then we have the same
conclusion as Theorem 4.2.

NHE(fi X, A) = {

Proof. 1t is easy to show that Ny(f) < 1. And then apply the same
arguments as in the proof of Theorem 4.2.

THEOREM 4.4. Suppose A is path connected and K = m,(A). Then

N X A) = { JAVIH(f>+1 if Nic(f) # 0 and Ni{(f: 1) =0
Nu(f) otherwise.

Proof. Since K = m;(A) and A is path connected, it is easy to
show that Nk(f) < 1 by Thoerem 4.2. If NK(f_) = 0, 1t is obvi-
ous from Theorem 2.7. Suppose Ny (f) # 0. If NE(f;f) # 0, then
N (f; f) = Nic(f) and hence N{(f; X, 4) = Nu(f). 1 N (f; f) =
0, then Ni(f; X, A) = Nu(f) + Ni(f) = Nu(f) + 1.

COROLLARY 4.5. Let the restriction f : A — A of a compact poly-
hedral pair map f: (X, A) — (X, A) to A be homotopic to the identity
map id: A — A. Then

Nu(f)+1 if Ng(f)#0and NE(f; /) =0

H/op, —
Ng(f; X, A) = { Nu(f) otherwise.
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Proof. 1t is easy to show that Ni(f) < 1. Apply the same argu-
ments as in the proof of Theorem 4.4.

COROLLARY 4.6. If A is simply connected, then NH(f; X,A) =
NH(f;X,A) and we have the same conclusion as Corollary 4.5.

Proof. Since A is simply connected, I is the trivial group and hence
N(f) = Nk(f) < 1. Using the same arguments as in the proof of
Theorem 4.4, it completes the proof.

Now let us consider some examples.

EXAMPLE 4.7. Let X = {(z,y) € R? | 1 < 22 + y? < 4} be the
annulus, 4 = {(z,y) € R? | 2% + y* = 1} be the unit circle in R?
and f the reflection on the = - axis. Let H be the fundamental group
71(X) of X and K be the fundamental group 71(4) of A. Clearly
71(X) is isomorphic to the integer group Z, that is, m1(X) & Z. Since
ir : m(A) = m1(X) is an isomorphism, K = m1(A) = Z.

Using Theorem 4.2, we have N2 (f; X, A) = Nx(f) = 1 and NH(f;
X,A) = N(f) =2 and hence we have NE(f; X,A) < NH(f. X, A).

EXAMPLE 48. Let C = {t = 2+1iy € C| |z - 2| = 1}, and
D={z=z2+4€C||z] <1}. Let X be their union X = CV D
with the point 1 in common and A be the figure eight which is the
boundary of X. Let f : (X,4) — (X, A) be the selfmap satisfying
f(z) = (2=2° +2if z € C and f(z) = 2 if z € Bd(D) which is
the boundary circle of D. Then Fix(f) N4 = {~1,1,3}. We know
that 7;(X) is isomorphic to the fundamental group of the unit circle
S', namely m(X) 2 Z. Thus let H = 3Z and K be the kernel of the
induced homomorphism 7, : m;(A) — 7;(X). Then K is not the trivial
subgroup since m;(X) is isomorphic to Z and 7;(A) is the free group
Z x Z on two generators. It is easy to check that i, K C H, f K C K
and frH C H. Then we have Ny(f) =2, Nx(f) =1 and NE(f; f) =
1 and hence we have Nf{(f; X, A) = 2. By Theorem 2.4, we have
NE(fiX,A) < NH(f; X, A). In fact, NH(f,X,A) = 3 and hence we
have Nf(f; X, A) < NY(f; X, A).

EXAMPLE. 4.9. Let X = {z = a+iy e C| |z} =1}, 4 =1
and f : (X,A4) — (X, A) be the reflection to x-axis. Then since we
have N(f) = N(f;f) = Ny(f) = 1 and N(f) = 2, we have 1 =
NE(f, X, 4) < N(f;X,A) = 2. (See Corollary 2.5)
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5. The relation between normal subgroups and Nielsen
numbers

Let f : X — X be a selfmap on a compact polyhedron X. Let H; be
a (not necessarily trivial group) normal subgroup of the fundamental
group m1(X) of X such that frH, C H; where fr : m(X) — m(X)
is the induced homomorphism by f. It is well known that the mod
H; Nielsen number Ny,(f) is a lower bound for the Nielsen number
N(f). Thus if we consider the Nielsen number N(f) as the mod {1}
Nielsen number where {1} is the trivial group, then we easily see that
{1} < Hy implies Np,(f) < Ny1)(f) = N(f) where A < B denotes
that A is a subgroup of B.

Now let H; be a normal subgroup of m1(X) such that H, is a sub-
group of the normal subgroup H; and f.H; C Hy. We may consider
quotient space X /H; for j = 1,2 and may obtain a commutative tri-
angle of covering maps

X N X’/HQ

la
P\ )?/Hl

I m

X

and we will take q : )?/H2 — )Z'/Hl as a covering map and p; :
X/Hl — X and p; = pyogq: X/HZ — X as models of regular
coverings corresponding H; and H,, respectively. The group Dy, of
covering translation on this regular covering space is quotient group
m(X)/Hjfor j =1,2.

And the lifting square
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on which fixed point classes is based splits into three commutative

squares
i

X — X
QZl 1‘72
- fu, .
X/Hy ———— X/H»

T
~ fH, ~
X/H, —— X/H;
Pll 1?1

X —j——+ X,

where fHJ. is a lifting of fand is induced by a lifting f: X — X for
Jj =12

The only obstacle to developing a theory of fixed point classes with
respect to a covering map is that not every map fx, : X/Hy — X/H;
can be lifted to fy, : X/H, — X/H,. Thus we need the following
lemma. (See [5].)

LEMMA 5.1. f.H,; C H, if and only if such a lifting exists.

Proof. Let fH,-, (7 = 1,2) and ¢~ be the induced homomorphisms.
From the covering space theory, we know that such a lifting exists iff

Fr,, an(m1(X/H2)) C gu(m1(X /H2)). Now
frHz C Hy iff fap1,an(ma(X/Hz)) C proan(mi(X [ H2))
( p1 0 ¢ = p2 is. the regular covering corresponding H )
ff p1, ge Fira, (11(X/Hz)) C p1,gn(m1(X/H2))
(foprog=piogofu,)
iff g fitz, (11(X/H2)) C gu(ma (X /H2))
( p1, 1s injective )
iff fir,, 4x(mi(X/H2)) C gx(m1(X/H2))
(qofu,=fuoq).
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THEOREM 5.2. ([5]) Let f : X — X be a selfmap of a compact
polyhedron and let H; (j = 1,2) be a normal subgroup of 71(X) such
that H; is a subgroup of H;, fxHj C Hj for j = 1,2. Then we have
Ny (f) < Nu,(f).

Now consider a pair map f : (X, A) — (X, A) of compact poly-
hedra. We shall write f : A — A for the restriction of f to A and
write f : X — X if the condition that f(A) C A is immaterial. Let
t: A — X be the inclusion map. Let H; (; = 1,2) be a normal sub-
group of 71(X) such that H; is a subgroup of H; and frH; C Hj for
7 =1,2. Let K; (j = 1,2) be a normal subgroup of 71(A) such that
K> is a subgroup of Ky, i,K; C H; and f,I&’j C K; ( = 1,2) where
ir : M(A) = m(X) and fr : m1(A4) — 7,(A) are the induced homo-
morphisms. Thus as like section 2 , we can consider the relative mod
(Hj, K;) Nielsen number N}:’ (f; X, A) and the relative mod (H;, {1})
Nielsen number N (f; X, A) for j = 1,2. To obtain the inequalities
N (f;X,4) < NE2 (£ X, A) and NH1 (£, X, 4) < NH2(f X A) we
consider the following theorems.

THEOREM 5.3. Let f: X — X be a selfmap of a compact polyhe-
dron, let H; (j = 1,2) be a normal subgroup of 71(X) such that H, is
a subgroup of Hy, frH; C Hj for j = 1,2. If frH, C H, - J(f), then
any two mod H; fixed point classes in a given mod H; fixed point class
have the same index.

Proof. 1t is well known that frH; C H, - J(f) implies frH, C
H; - J(f) for any lifting f : X o X of f.

Let ij : .i:/Hj — X'/H] (7 = 1,2) be a lifting of f and be induced
by a lifting f : X — X. A lifting an, o fH2 on _’Z'/Hg induces a
lifting oy, o fy, on )?/Hl, where ay; is the coset Hja € m(X)/H;
for j = 1,2. It is obvious that ay, o jtul is conjugate to J;H1 iff o~ h
for some h € H, where « stands for the f,,,H - conjugacy class. Thus
if the mod H fixed point class of < Qp, O sz > is in the same mod
H, fixed point class as < fy, >, then a « k « f,,(h) for some h € H,
and hence a « 7y, where TH, 1S the coset Hyr € H, - J(f) Thus

index( f, p2Fix(ay, o fm)) = index(f, p2Fix(7y, o fH?))
= index(f,P‘zFiX(ffh’z)) :
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We have the conclusion.

THEOREM 5.4. Let f: (X, A) — (X, A) be a pair map of compact
polyhedra, let H;, K; (j = 1,2) be normal subgroups of n1(X), m1(A),
respectively such that Hs is a subgroup of Hi, K3 is a subgroup of K1,
inK; C H], f=H; C Hj and f,rIx] C K; fOI‘j’ =1,2. Iff,rHl C H,-
J(f) or fr K1 C K2+ J(f) then WehaveNK (f; X A) < Nkz(f X, A).

Proof It suffices to show that Ny, (f) — N{fl‘(f f) < Nu,(f) -

2(f f). Let FH ,FHI,--- Ff; be all essential mod H, fixed
point classes of f : X — X and let FHX,FH yooo s Fp form <on
be all common mod (Hj, k) fixed point classes of f and f. And
let F,-I,F,-z,---F,-,‘, be the essential mod H, fixed point classes of f
which is contained in Flih foreach 1 <71 < nandall l; > 1. If
fxHy C Hy - J(f) , then we have NHz(f) =L+l +--- 41, and
NEfif) S b+ 1+ + L. Since Ni'(f;f) = m, we have the
conclusion.

Now for the case frK) C Ky - J(f) , let ' be the number of
essential mod H, fixed point classes of f which are contained in the
inessential mod H; fixed point classes of f. Then we have Ng,(f) =
Lh+l+-+ln+0U and N2 (fi ) <h+l+ -+ ln+1'. Thus we
get the conclusion.

REMARK 5.5. (On X.) Let f : X — X be a selfmap of a compact
polyhedron. Let H; be a normal subgroup of 7;(X) such that f=H; C
H;j for each 0 < j < n and also H; be a subgroup of Hj_; for each
1 < j < n. Specially, let Hy be the fundamental group 7,(X) and H,
the trivial group. Then we have a series {H;} of normal subgroups of
71(X), namely {1} = Hn < Hnoo1 < -+ < Ho < Hi < Ho = 1 (X).

For each 1 < j < n — 1, we may consider quotient spaces )N(/Hj,
):’/Ho = X and X/Hn = X and will take gjt+1: }:’/H]-Jrl — X’/Hj as a
covering map and p;j : X’/HJ — X as the model of the regular covering
corresponding H;. Then pj4+1 = pj o ¢j41 foreach 1 <j <n—1and
hence pn = ppn-10q¢n =p: X — X is a universal covering.

For each 2 < j < n — 2, the lifting corresponding H; of f can be
lifted to the lifting corresponding Hj4; of f by Lemma 3.1.
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THEOREM 5.6. Let f : X — X be a selfmap of a compact poly-
hedron. Suppose n1(X) is solvable. Then we have a series of normal
subgroups satisfying conditions of Remark 5.5.

REMARK 5.7. (On pair (X,A).) Let f: (X, 4) — (X, A) be a pair
map of compact polyhedra. For each 0 < j < n, let {H;} be a series of
normal subgroups as in Remark 5.5. Now let K; be a normal subgroup
of m1(A) such that frK; C K; and txl; C Hj for each 0 < j < n and
also let K; be a subgroup of K;_; for each 1 < j < n. Specially, let
Ko be the fundamental group m;(A) of A. Then we have a series {K;}
of normal subgroups of 71(4), namely {1} < K, < Kn_1--- < K3 <
Ky < Ky = 71(A). In fact, since i, K, C H,, K, is not necessarily
trivial group although H,, is the trivial group. Thus we denote {1} by
Kpni.

For each 1 < j < n, as in Remark 5.5, we may consider quotient
spaces E/K]-, AV/KO = A and Z/K,H.l = A. And we will take a
covering map §j4 : Z/I(]-H — ‘Z/Kj and the model of the regular
covering map p; : E/I&'j — A corresspoding K; for each 1 < j < n.
Then p;11 = p; 0 gj41 for each 1 < j < n and Pnt+l =Pn Odny1 =P ¢
A — A is a universal covering.

For each 2 < j < n — 1, the lifting corresponding Kj of f can be
lifted to the lifting corresponding I;,, of f by Lemma 5.1.

THEOREM 5.8. Let f: (X, A4) — (X, A) be a pair map of compact
polyhedra. For each 0 < j < n, let {H;} and {K;} be two series of
normal subgroups of 71(X) and 71(A), respectively, as in Remark 5.5
and Remark 5.7. If fxH;_y C H; - J(f) or f=Kj_1 C K;-J(f) for each
1<j<n,

then we have

N (f; X, A) S NRHF X A) < - < NER-Y (X )
Al Al Al
NAU(f X, A) S NP2 (f,X,4) < - < N1 (£, X, 4) < N(f; X, A).
Proof. By Theorem 2.4, we have Ny (f; X, 4) < N*i (f; X, A) for

each 1 <j <n-1. And by Theorem 5.4, we obtain that each row
holds.
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