ON THE C^r CLOSING LEMMA

JONG SUH PARK AND CHIN KU CHU

1. Introduction

Before state precisely our main theorem, we want to make some brief historical comment.

R. Thom, in 1960, was the first to consider the following problem. Can a vector field with a recurrent trajectory through a point p be perturbed so as to obtain a new vector field with a closed trajectory through p? He claimed an affirmative answer, but his argument was valid only for a C^0 small perturbation. The perception that this problem is trivial in class C^0 and very difficult in class C^r , $r \geq 1$, is due to M. Peixoto in [6]. It should be remarked that the C^r closing lemma, $r \geq 1$, in the case that M is the 2-torus T^2 and the vector field never vanishes was proved in 1962 by M. Peixoto [6] and recently by C. Gutierrez [3] for the so called constant type of vector fields on T^2 with finitely many singularities. In 1965, C. Pugh proved the C^1 closing lemma for compact manifolds of dimension two and three. In 1967, he proved the C^1 closing lemma for compact manifolds of arbitrary dimension and extend it to the case of closing a nonwandering trajectory rather than a recurrent one [7].

In 1983, C. Pugh and C. Robinson established the C^1 closing lemma when M is noncompact, provided that the point p lies on $\Omega_C = \{p \in \Omega \mid \alpha(p) \cup \omega(p) \neq \emptyset\}$.

In this paper, we prove the C^r closing lemma.

THEOREM. Let M be a manifold, X a C^r vector field on M, and p a nonwandering point of X. Then for each $\varepsilon > 0$, there exists a

Received November 2, 1993.

AMS 1991 subject classification: 58F

Key words and phrases: closing lemma, nonwandering point, periodic point. The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1992, Project No. BSRI-92-110.

 C^r vector field Y on M such that p is a periodic point of Y and that $||X - Y||_r < \varepsilon$.

2. Preliminaries

PROPOSITION 2.1. Let M be a manifold. For each C^r vector field X on M, there exist an open subset D of $M \times \mathbb{R}$ and a C^r map $\theta: D \to M, (p,t) \mapsto \theta_t(p)$, such that

- (1) for each $p \in M$, there exist a(p) < 0 < b(p) such that $D \cap (\{p\} \times \mathbb{R}) = (a(p), b(p))$, denote I(p),
- (2) $\theta_0(p) = p$ for all $p \in M$,
- (3) for all $p \in M$ and all $s \in I(p)$, $\frac{d}{dt}\theta_t(p)|_{t=s} = X_{\theta_\bullet(p)}$,
- (4) if $(p,t) \in D$, then $a(\theta_t(p)) = a(p) t$, $b(\theta_t(p)) = b(p) t$, and moreover for any $s \in I(\theta_t(p))$, $\theta_{s+t}(p)$ is defined and $\theta_s(\theta_t(p)) = \theta_{s+t}(p)$.

The map θ is called the local flow generated by X. Let θ be the local flow generated by a C^r vector field X on M. For any $p \in M$, we define the first positive prolongational limit set $J^+(p)$ of p by

$$J^+(p) = \{ q \in M \mid \theta_{t_n}(p_n) \to q \text{ for some sequences } p_n \to p, t_n \to \infty \}.$$

p is called a nonwandering point of X if $p \in J^+(p)$.

The following lemma is well known (cf.[2], Chapter 4, Theorem 3.14).

LEMMA 2.2. Let X be a C^r vector field on M and let $\theta: D \to M$ be the local flow generated by X. Let p be a point of M and $X_p \neq 0$. Then there exist a C^r coordinate neighborhood (V, ψ) of $p, \nu > 0$, and a neighborhood $W \subset V$ of p such that θ restricted to $W \times (-\nu, \nu)$ is given by

$$(x_1,\ldots,x_n,t)\mapsto (x_1+t,x_2,\ldots,x_n).$$

In these coordinates $X = \psi_*^{-1}(\frac{\partial}{\partial x_1})$ on W.

3. Proof of the theorem

To prove the theorem, we need the following lemma.

LEMMA 3.1. Let $\nu > 0$. For each $\varepsilon > 0$, there exists a $\delta, 0 < \delta < \nu$, such that any two points $p \in \{-\nu\} \times [-\delta, \delta]^{n-1}, q \in \{\nu\} \times [-\delta, \delta]^{n-1}$ are connected by a trajectory arc of a C^{∞} vector field Y on \mathbb{R}^n with

$$||Y - \frac{\partial}{\partial x_1}||_r < \varepsilon, \quad Y = \frac{\partial}{\partial x_1} \quad \text{on} \quad \mathbb{R}^n - (-\nu, \nu)^n.$$

Proof. For $-1 \leq u_1, \ldots, u_{n-1} \leq 1$, define a C^{∞} vector field $Y(u_1, \ldots, u_{n-1})$ on \mathbb{R}^n by $Y(u_1, \ldots, u_{n-1}) = \frac{\partial}{\partial x_1} + \frac{\varepsilon f}{A(r+1)\sqrt{n}} \sum_{i=1}^{n-1} u_i \frac{\partial}{\partial x_{i+1}}$, where $f: \mathbb{R}^n \to \mathbb{R}$ is a C^{∞} function such that $0 < f \leq 1$ on $(-\nu, 0) \times (-\nu, \nu)^{n-1}$, f = 0 on $\mathbb{R}^n - (-\nu, 0) \times (-\nu, \nu)^{n-1}$, $A = \max\{||D^j f(p)|| | 0 \leq j \leq r, p \in \mathbb{R}^n\}$. Let $0 \leq j \leq r$. Since

$$\begin{split} & \left\| D^{j} \left(Y(u_{1}, \dots, u_{n-1}) - \frac{\partial}{\partial x_{1}} \right) \right\| \\ &= \left(\sum_{i=1}^{n-1} \sum_{k_{1}, \dots, k_{j}=1}^{n} M^{2} u_{i}^{2} \left(\frac{\partial^{j} f}{\partial x_{k_{1}} \dots \partial x_{k_{j}}} \right)^{2} \right)^{\frac{1}{2}} \\ &\leq \left(M^{2} (n-1) \sum_{k_{1}, \dots, k_{j}=1}^{n} \left(\frac{\partial^{j} f}{\partial x_{k_{1}} \dots \partial x_{k_{j}}} \right)^{2} \right)^{\frac{1}{2}} = M \sqrt{n-1} ||D^{j} f||, \end{split}$$

$$||Y(u_1, \dots, u_{n-1}) - \frac{\partial}{\partial x_1}||_r = \sum_{j=0}^r \left\| D^j \left(Y(u_1, \dots, u_{n-1}) - \frac{\partial}{\partial x_1} \right) \right\|$$

$$\leq \sum_{j=0}^r M \sqrt{n-1} ||D^j f|| \leq \sum_{j=0}^r M \sqrt{n-1} A = (r+1) M \sqrt{n-1} A$$

$$= \frac{\sqrt{n-1}}{\sqrt{n}} \varepsilon < \varepsilon,$$

where $M = \frac{\varepsilon}{A(r+1)\sqrt{n}}$. It is clear that $Y(u_1, \dots, u_{n-1}) = \frac{\partial}{\partial x_1}$ on $\mathbb{R}^n - (-\nu, 0) \times (-\nu, \nu)^{n-1}$. Let $0 < \delta < \nu, 1 \le i \le n-1$. For each $p \in \{-\nu\} \times [-\delta, \delta]^{n-1}$, let p^-, p^+ be points where the trajectories of $Y(0, \dots, 0, -1, 0, \dots, 0)$, $Y(0, \dots, 0, 1, 0, \dots, 0)$ through p intersect

 $\{0\} \times [-\nu, \nu]^{n-1}$ respectively. If $p = (-\nu, p_1, \dots, p_{n-1})$, then there exist unique numbers $\ell_i^-(p) > 0, \ell_i^+(p) > 0$ such that

$$p^{-} = (0, p_1, \dots, p_{i-1}, p_i - \ell_i^{-}(p), p_{i+1}, \dots, p_{n-1}),$$

$$p^{+} = (0, p_1, \dots, p_{i-1}, p_i + \ell_i^{+}(p), p_{i+1}, \dots, p_{n-1}).$$

Since $\ell_i^-(p), \ell_i^+(p)$ are continuous in p and $\{-\nu\} \times [-\delta, \delta]^{n-1}$ is compact, $\ell_i^-(p), \ell_i^+(p)$ have minimum value $d_i^-(p) > 0, d_i^+(p) > 0$ respectively. Clearly if we dimish δ , then the minimum lift $d_i^\pm(\delta)$ increases. Thus we can choose a $0 < \delta_1 < \nu$ such that $d_i^\pm(\delta_1) > 2\delta_1$ for all $1 \le i \le n-1$. Let $p = (-\nu, p_1, \dots, p_{n-1}) \in \{-\nu\} \times [-\delta_1, \delta_1]^{n-1}, q \in \{0\} \times [-\delta_1, \delta_1]^{n-1}$. Since $\{0\} \times [-\delta_1, \delta_1]^{n-1} \subset \{0\} \times \frac{n-1}{i=1} [p_i - \ell_i^-(p), p_i + \ell_i^+(p)]$, there exist $-1 \le u_1, \dots, u_{n-1} \le 1$ such that the trajectory of $Y(u_1, \dots, u_{n-1})$ begins at p through q. Similarly, we can choose a $0 < \delta_2 < \nu$ such that any two points $p \in \{0\} \times [-\delta_2, \delta_2]^{n-1}, q \in \{\nu\} \times [-\delta_2, \delta_2]^{n-1}$ are connected by a trajectory arc of a C^∞ vector field Y on \mathbb{R}^n with

$$||Y - \frac{\partial}{\partial x_1}||_r < \varepsilon, \quad Y = \frac{\partial}{\partial x_1} \quad \text{on} \quad \mathbb{R}^n - (0, \nu) \times (-\nu, \nu)^{n-1}.$$

Let $\delta = \min\{\delta_1, \delta_2\}$. For any two points $p \in \{-\nu \mid \times [-\delta, \delta]^{n-1}, q \in \{\nu\} \times [-\delta, \delta]^{n-1}, p, (0, \dots, 0)$ are connected by a trajectory arc of a C^{∞} vector field Y_1 on \mathbb{R}^n with

$$||Y_1 - \frac{\partial}{\partial x_1}||_r < \varepsilon, \quad Y_1 = \frac{\partial}{\partial x_1} \quad \text{on} \quad \mathbb{R}^n - (-\nu, 0) \times (-\nu, \nu)^{n-1}$$

and $(0,\ldots,0),q$ are connected by a trajectory arc of a C^{∞} vector field Y_2 on \mathbb{R}^n with

$$||Y_2 - \frac{\partial}{\partial x_1}||_r < \varepsilon, \quad Y_2 = \frac{\partial}{\partial x_1} \quad \text{on} \quad \mathbb{R}^n - (0, \nu) \times (-\nu, \nu)^{n-1}.$$

Define a C^{∞} vector field Y on \mathbb{R}^n by $Y = Y_1 + Y_2 - \frac{\partial}{\partial x_1}$. Then, since

$$Y = Y_1 \quad \text{on} \quad [-\nu, 0] \times [-\nu, \nu]^{n-1}$$
$$= Y_2 \quad \text{on} \quad [0, \nu] \times [-\nu, \nu]^{n-1}$$
$$= \frac{\partial}{\partial x_1} \quad \text{on} \quad \mathbb{R}^n - (-\nu, \nu)^n,$$

 $||Y - \frac{\partial}{\partial x_1}||_r < \varepsilon$ and the trajectory of Y beginning at p passes through $(0, \ldots, 0), q$.

We now prove the C^r closing lemma.

Proof of the Theorem. We may assume that $X_p \neq 0$. By Lemma 2.2, there exist a $\nu > 0$, C^r coordinate neighborhood (V, ψ) of p such that $\psi(p) = 0, [-\nu, \nu]^n \subset \psi(V), X = \psi_*^{-1}(\frac{\partial}{\partial x_1})$ on V. Let $A = \sup_{D} ||\psi_*^{-1}||$, where $D = [-\nu, \nu]^n$. Given any $\varepsilon > 0$, we can choose a $0 < \delta < \nu$ having the property described in Lemma 3.1 corresponding to $\frac{\varepsilon}{A}$. Since p is a nonwandering point of X, there exist two sequences $p_k \to p, t_k \to \infty$ such that $\theta_{t_k}(p_k) \to p$, where θ is the local flow generated by X. We can choose p_k such that $\theta_{t_k}(p_k) \in \psi^{-1}((-\nu, \nu) \times (-\delta, \delta)^{n-1})$. Let a, b be points where the trajectory of $\frac{\partial}{\partial x_1}$ through $\psi(\theta_{t_k}(p_k))$ and $\psi(p_k)$ intersects $\{-\nu\} \times [-\delta, \delta]^{n-1}, \{\nu\} \times [-\delta, \delta]^{n-1}$ respectively. It follows from the choice of δ that there exists a C^r vector field Z on \mathbb{R}^n such that $||Z - \frac{\partial}{\partial x_1}||_T < \frac{\varepsilon}{A}$ and that the trajectory of Z beginning at p passes through 0 and b. Define a C^r vector field Y on M by

$$Y = \psi_{\star}^{-1}(Z)$$
 on V
= X on $M - V$ (cf. [1], p207).

Then we have

$$||Y - X||_r = \left\| \psi_*^{-1}(Z) - \psi_*^{-1} \left(\frac{\partial}{\partial x_1} \right) \right\|_r$$

= $\left\| \psi_*^{-1} \left(Z - \frac{\partial}{\partial x_1} \right) \right\|_r \le ||\psi_*^{-1}|| \ ||Z - \frac{\partial}{\partial x_1}||_r < \varepsilon.$

It is clear that p is a periodic point of Y.

References

- R. Abraham, J. E. Marsden and T. Ratiu, Manifolds Tensor Analysis and Applications, Addison-Wesley Publishing Company, Inc., 1983.
- W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.
- 3. C. Gutierrez, On the C^{τ} -closed lemma for flows on the torus T^2 , Ergodic Theory and Dynamical Systems, 1991.

- 4. J. Palis. Jr., Geometry theory of dynamical systems, An introduction, Springer-Verlag, New-York, Heidelberg, Berlin, 1982.
- 5. M. L. A. Peixoto, The closing lemma for generalized recurrence in the plane, Trans. of Amer. Math. Soc. 308 (July 1988), 143-158.
- 6. M. M. Peixoto, Structural stability on two dimensional manifolds, Topology 1 (1962), 101-102.
- C. C. Pugh, An improved closing lemma and a general theorem, Amer. J. Math. 89 (1967), 1010-1021.
- 8. C. C. Pugh and C. Robson, The C¹-closing including Hamiltonians, Ergodic Theory and Dynamical Systems 3 (1983), 261-313.

Department of Mathematics Chungnam National University Taejon, 305-764, Korea