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CAUCHY PROBLEM FOR THE EULER
EQUATIONS OF A NONHOMOGENEOUS
IDEAL INCOMPRESSIBLE FLUID I

SHIGEHARU ITOH

1. Introduction

Let us consider the system of equations

pt+v-Vp=0,
(1.1) ploc + (v Vo] + Vp = pf,
div v =0,

in @r = R® x [0,T] , subject to the initial conditions
(1.2) { Pli=o = po(a),

vl =g = vo(z).

Here f(xz,t), po(2) and vg(z) are given, while the density p(z,t), the
velocity vector v(z,t) = (v!(z,t),v%(z,t),v3(z,t)) and the pressure
p(z,t) are unknowns. The system (1.1) describes the motion of a non-
homogeneous ideal incompressible fluid.

The aim of the present paper is to establish the unique solvability,
local in time, of the problem (1.1) and (1.2). This will be carried out
by applying the method of the Galerkin approximations. Furthermore,
we declare that the assumptions to pg(x) are weakened compared with
those in the previous paper [2], in which we proved the similar result
by showing the existence of a fixed point of some map.

Our theorem is the following.
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THEOREM 1.1. Assume that

(1.3) inf po(z) =m >0 and suppe(z) =M < oo,
(1.4) Vpo(z) € H*(R?),

(1.5) vo(x) € HYR®) and divvy =0

and

(1.6) f(z,t)€ L0, T; H*(R*)) and div f € L=(0,T; L'(R*)).

Then there exists T* € (0,T] such that the problem (i.1) and (1.2) has
a unique solution(p,v,p) which satisfies

(1.7) m < p(z,t) <M

and

(1.8)
(Vp,v,Vp) €L(0,T*; H*(R®))
x L°(0,T*; H*(R®)) x L>=(0,T*; H*(R®)).

In section 2, we establish an a priori estimate of solutions, and then
theorem will be proved in section 3.

2. A priori estimate

Let (p,v,p) be a sufficiently regular solution. Hereafter ¢ is the
generie constant related to the imbedding theorems and ¢; is the one
dependent only on m, M and .

LEMMA 2.1. For p(x,t) . the estimates
(2.1) m < p(z,t) < M

and

d .
(22) S 1960l < cllot ol [Tp(0)
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hold, where ||o||; = ||®]| i (ga)-

Proof. By means of the classical method of characteristics, we have
the representation

(23) p(:xvt) = P()( y(TaIst)Ir.—_U)a

where y(7,2,t) is the solution of the Cauchy problem

dy
(2.4) o =),
MT:t::L

It results from this that the estimate (2.1) holds.
Let a@ be a multi-index. We apply the operator

o 8 oy 0 a2 _3_ (e 5]
b* = <01’1) (03:2> <(91:3)

on each side of the first equation of (1.1). If we multiply the result by

D%p , integrate over R® and sum over 1 < |a| < 3, then we have the
equality
1d : * )
sVl = = S [[ vvoenmy
(2.5) lf=1
+ 2. ( ) Dy - 7(D*? p)(D%p)dz).
0<p<a

Tle first term of the right hand side is zero, as 1s seen by an integration
by parts using div v = 0. The sccond term car: be estimated by using
the inequalities

(2.6) llghilo < ¢llglly l1Rllg

(2.7) lghlly < cllglly lI21l;
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and then we get

22 G

joj=1 0<B<a

. D% - (DB p)(D%p)dz
R

< el Volly 1Vell; < cllefly Va3

Hence we find that

d
(2.9) 7 Vo1l < e lle@)ll; IV p()]3

LEMMA 2.2, If we put
(2.10) n(x,t) = plr,t)7 ",

then the estimates

(2.11) M= < plz,t) <m™!
and
d
(2.12) = IV, < elfe()ls [Vn(ll
hold.

Proof. We can easily see that n(z,t) satisfies the >quation

vV =0,
(2.13) { e+ v ]

Hlemo = pol2) ™" = mo().
Therefore the estimates directly follow from Lemma?.1.

LEMMA 2.3. For p(z.t), the estimate

IVp()l; < et (L4 V()] + V0],

(2.14) , ,
(@S + 17Ol + 1 div FOllacas))
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holds.

Proof. Applying the divergence operator on both sides of the second
equation of (1.1), we get

3

(2.15) div (nVp) = Z vi vl + div f=F.

If we multiply this equation by p and integrate over R*, then we obtain
(2.16)

—_ 2 |
M- IVplls < HF”L6/5(R3) ”P“LG(RS) S “F||L6/5(R3) 1Vpll,

2/3 1 2 1 ;
< c||FI5 A oy IF U™ 19l < €5 Il gy + 5 IF NG IV -
3 3
Hence we get

(2.17) 1Vpllo < exlllFll 1oy + 1 lo)-

In order to accomplish our purpose, we use the following inequality (cf.

[3]):

3
(2.18) [lull, < \/;(HAUHU + [lully) for any u € H*(R’).

Noting that (2.15) can be written in the form Ap = pF — pVn-Vp, we
get that for & with |a| = 2,

1D%pliy = \/g(HD“(pF = pVn - Vp)llo + 1D07plly)

(2.19)
3 s o \

< ﬁ(HD (PEle + 1D (V0 - V)llo + 1D°pllp)-

By the direct calculation, we obtain

(2:20) 1D E)lo < (M + Vol 11l

and

(221)  [D%(p%n- Vp)lly < (M + 190]l) V1], 1921l
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and then we get
1D%pll; < ed[(T4 Vo)l + VR 1F)l,
+ (190l + IVn,)° 19pl,].
Now, from the interpolation inequality and Young’s inequality, we have

(2.23) e+ Vo)l + Vo) 11Vell,

(2.22)

1
< S IVplls + T+ IV, + [9n()]) 11 9pl, -
Therefore we find that
(2:24) IVpll; < cs(@+ VPOl + IV W FN 13 oy + I1F)-
On the other hand, it is easy to verify that
(2.25) (EY, + 1F s gy < clIVoll; + 1 div flly + | div fll 1 gs))-
Consequently, the desired estimate is established. O
LEMMA 2.4, For v(r.t). the estimnate

)l < erllo(lls + (1 + V0Dl V()5 + 1 (2)]]3)

296 d
(2.26) dt

holds.

Proof. We rewrite the second equation of (1.1) in the form v 4+ (v-
Vv +yVp = f. Applying the operator D on each side of this equa-
tion, multiplying the result by D®v, integrating over R® and summing
over 0 < [} < 3, then we have the equality

3

1d 2 ‘ o3 S |
2.dt ol = = [Zf;(){ R (v VD) - Dovda
5 () Lo v
055t B I
(2.27) L / D Vp . Dvda
Jnr3
+ ) (C;) D?)D*~?Vp - D*vda]
0<F<a 4 J s

+ D?f - Ddu.
R3
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Similarly to the proof of Lemma 2.1, we obtain

(2.28) / (v-VD%)-D%dz = 0,
R3
(2. 29)
Z 2 ( ) Dy VD). D%de| < | Vol < e|lull?,
|a|=00<8<
3
(2.30) > /Ra nD°Vp - D¥vdz| < m™ 1 ||Vpll5 [vlls ,
|ax]=0

DﬂnDa-ﬂVp - D%vdz

(2.31) Z > ()

|a]=00< <
< c[IVall, VeI, Vol < cllVall, [[Vplls vl

and
3
(2.32) > . D f - D%vdz| < ||£li5 lv]ls -
|or|=0
Hence we find that the estimate (2.26) holds. O

LEMMA 2.5. There exist T* € (0,T] such that

(2.33) sup ([[Vo(t)lly + V0l + lv(@)lis + [IVe()l;) < C.
0<I<T

Here T* and C' depend only on m, M, || fll peo 1,13 oY)
| div f”Lw(o,T;Ll(R3))’ IIVpolly. llvoll; and the constants of imbeddings.

Proof. If we set

(2.34) Y(t) =1+ IVp(d)lly + IVl + llv()lls
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and

(2.35) K =14 fllpeso,z505rs) + | &V fll poo 0,711 (R2Y)
then, from the above lemmas, we have a differential inequality

dY ()

2.36
(2.36) dt

< e KY(1)S.

Therefore we conclude that
(2.37)
Y(t) S Y(0)(1 -5 KY(0)°)™/° provided ¢ < (5¢; KY(0)*)~,

and thus

31
2. (1) < 2Y( T s —
(2.38) Y(t) < 2¥(0) for s 160¢ K'Y (0)3

3. Proof of theorem 1.1

Since the proof of uniqueness is standard, we will Just show the
existence of a solution. Let H2(R®) be the closure of J(R®) = {u €
{Cs°(R*)Y3; div w = 0} in H3(R?). Since HJ(R®) is separable and
J(R*) is dense in H3(R*), there exists {¢?(z)} C J, which is total in
H3(R®). We may assume that ¢’ (z) are orthogonal in H3(R®).

We apply the Galerkin method with this {¢/(z)}. Namely, we look

N S ; 7 .
for pN(x, 1), o™ (x,t) = 221 af(_t)dﬂ(l‘) and pV(x, 1) satisfying
]:
(3.1) r
p;’\f + ’UN . V/)A — 0*

((UIN + (UN ’ V)UN + p_}\’—va’ ¢])) = (f7 ¢]))~ j = 17 :]V'/

3 ros -
(iiv(-’;%valwv) = — Z (v‘\/);) (v )i, + o div f,

1.7=1
/)I\lt:U :/)0('7.)7
Ty[\"'] = P[\? U(J(-T),

=20
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where ((e,®)) stands for the scalar product in H*(R*) and Py is the
orthogonal projection in H? on the space spanned by ¢!,--- , ¢V,
The second equations of (3.1) form a system of ordinary differential
equations for aj-v(t) and the fifth one gives the initial conditions.
If we multiply the second equations of (3.1) by afl(t) and add in

j=1,---, N, then we obtain the relation
(3.2) (0 + (" - 9™ + 9N Vp o)) = ((£,07)),

where ¥ = (pN)~!. This coincides with (2.27) replacing v, p and 7
by oV, p%¥ and n" respectively. Therefore, from the results in section
2, we have

(3.3) m < pN(a )< M
and

34) sup (Vo @), + V0¥ 0+ e O+ 92V 1)) < €

Moreover, since ¢’ are orthogonal in H*(R®), we deduce from the
second equations of (3.1) that

(3.5) ol = Pn(f — (N Tt — n™vp™).

Hence we get
(3.6)
o ()], < e lFOl + [l Ol + A+ 92V, [Fp¥ D]

and with {3.4) 1t is easily found that

(3.7) sup | (1)]|, < C.
0<t<T

These estimates guarantee the unique solvability of the problem (3.1)
on the interval [0,7*], and furthermore permit to pass to the limit in
the nonlinear terms using a standard compactness theorem (cf. [1], [4],
[5]). Hence we can verify the existence of a unique solution of the prob-
lem (1.1) and (1.2) on the interval [0,7*] as well as the applicability
of the inequalities (2.1) and (2.33) to it. This completes the proof.
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