ON SUBMANIFOLDS OF A SPHERE WITH BOUNDED SECOND FUNDAMENTAL FORM

  • Published : 1995.02.01

Abstract

Let $S^{n+p}$(c) be the (n + p)-dimensional Euclidean sphere of constant curva ture c and let M be an n-dimensional compact minimal submanifold isometric ally immersed in $S^{n+p}$(c). Let $A_\xi$ be the second fundamental form of M in the direction of a normal $\xi$ and T the tensor defined by $T(\xi, \eta) = traceA_\xi A_\eta$.

Keywords