Kainate-induced Elevations of Intracellular $Ca^{2+}$ and Extracellular Glutamate are Partially Decreased by NMDA Receptor Antagonists in Cultured Cerebellar Granule Neurons

  • Oh, Seikwan (University of Mississippi Medical Center, Department of Pharmacology and Toxicology) ;
  • Shogo-Tokuyama (University of Mississippi Medical Center, Department of Pharmacology and Toxicology) ;
  • Patrick P.McCaslin (University of Mississippi Medical Center, Department of Pharmacology and Toxicology)
  • Published : 1995.12.01

Abstract

Several lines of evidence indicate that physiological activity of N-methyl-D-aspartate (NMDA) receptor was blocked by physiological concentration of $Mg^{2+}$ (1.2 mM). However, the activity of NMDA receptor may not be blocked totally with this concentration of $Mg^{2+}$ under elevated membrane potential by kainate. Here, we described the effect of $Mg^{2+}$ on NMDA receptor and how much of NMDA receptor functions could be activated by kainate. Effects of NMDA receptor antagonist on kainate-induced elevation of intracellualr $Ca^{2+}$ levels $([Ca^{2+}]_i)$ and extracellular glutamate level were examined in cultured rat cerebellar granule neurons. kainate-induced elevation of $([Ca^{2+}]_i)$ was not affected by physiological concentration of $Mg^{2+}$. Kainate-induced NMDA-induced elevation was blocked by the same concentration of $MG^{2+}$Kainate-induced elevation of [$([Ca^{2+}]_i)$ was decreased by 32% in the presence of NMDA antagonists, MK-801 and CPP (3-[2-carboxypiperazine-4-yl]propyl-1-phosphonic acid), in $Mg^{2+}$ free buffer. Kainate receptor-activated gluamate release was also decreased (30%) by MK-801 or CPP. These resuts show that certain extent of elevations of intracellular $Ca^{2+}$ and extracellular glutamate by kainate is due to coativation of NMDA receptors.

Keywords