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FIBER BUNDLES THAT INDUCE
APPROXIMATE FIBRATIONS

MEE KwaNG KANG
1. Introduction.

Homotopy lifting property is a very important property for a map
to have. Using the more general property of homotopy lifting property,
D.S. Coram and P.F. Duvall[l] introduced the concept of an approx-
imate fibration and showed that it has nice analogous properties to
Burewicz fibration and applying to a larger class of maps. If p: M — B
is an approximate fibration to a path connected space B, then point
inverses are pairwise homotopy equivalent absolute neighborhood re-
tracts and there exists a homotopy exact sequence between M, B and
fibers of p. Thus approximate fibrations are very useful concept as well
as Hurewicz fibrations in the study of maps and locally prevalent.

Our principal concern is to solve the problem that under what con-
dition a proper map is an approximate fibration. In order for a map
p: M — B to be an approximate fibration, its point inverses must be
pairwise homotopy equivalent. By the way, for particular integer &, any
proper map defined on an (n + k)-manifold is always an approximate
fibration owing to the fact that each point preimage is homotopy equiv-
alent to some closed manifold N. R.J. Daverman called such manifolds
N codmension k-fibrators. Unexpectedly, many collection of manifolds
N has this desirable property. Note that a codimension k fibrator is a
codimension (k — 1) fibrator, but its converse is not true, for example,
the (k — 1)-sphere $(*—1) is a representative example ([6},[13]).

We are not sure that the class of codimension k fibrators is closed
under finite product. For a codimension 2 case, Y.H. Im ([10}) showed
that the class of closed, orientable surfaces with non-zero Euler char-
acteristic has this property. Throughout [11] and {12], Y.H. Im, M.K.
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Kang and K.M. Woo obtained the result that a product of a sim-
ply connected closed manifold and a closed aspherical manifold with
hyperhopfian fundamental group is a codimension 2 fibrator. Before
then, R.J. Daverman showed that each of a simply connected space
([3]) and a closed aspherical manifold with hyperhopfian fundamental
group ({4}) is a codimension 2 fibrator. Our aim in this paper is to
investigate codimension 2 fibrators which is closed under bundie struc-
ture.

A proper map p: M — B between locally compact ANR’s is called
an gpprozimate fibration if it has the following approximate homotopy
lifting property: given an open cover ¢ of B, an arbitrary space X, and
twomaps ¢ : X - M and F : X x I — B such that pog = K, there
exists a map G : A x I — M such that Gy = ¢ and po G is e-close to
F.

We assume all spaces are locally compact, metrizable ANR’s, and
all manifolds are finite dimensional, orientable, connected and bound-
aryless. A manifold M is said to be closed if M is compact, connected
and boundaryless. A closed n-manifold N is called a codimension &
fibrator if, whenever p : M — B is a proper map from an arbitrary
(n + k)-manifold M to a finite dimensional space B such that each
point preimage p~!(b) is homotopic equivalent to N, p: M — B is an
approximate fibration.

A closed manifold N is called Hopfian if every degree one map N —
N which induces a 7;-automorphism is a homotopy equivalence. A
group H is Hopfian if every epimorphism ¢ : H — H is necessarily an
isomorphism.

A group H is said to be residually finite if for each ey # h € H,
there exists a finite group A and a homomorphism ¢ : H — A such
that ¢(h) # €.

2. Semidirect product and residually finite property.

First of all, let us consider a semidirect product of groups. Recall
that a group G is a semidirect product of H by K, denoted by G =
H x K, if G contains subgroups H and K such that

(1) H is a normal subgroup;
(2) HR = G;
(3) HN K =¢g.
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In contrast to a direct product, a semidirect product of H by K is
not determined up to isomorphism by the two groups but depend on
how H is normal in G. Our object is to recapture a semidirect praduct
G from any groups H and K.

DEFINITION 2.1. Let H and K be arbitrary two groups and let 6 :
K — Aui(H) be a homomorphism. Then H xg K is the set of all
ordered pairs (h,k) € H x K under the binary operation

(h kY K'Y = (hOL(R), kK')

In this definition, if we put G = H x4 I then G actually forms a
group under operation, and it is a semidirect product of H by K. Con-
versely, if G 1s a semidirect product of H by I, then G is isomorphic to
Hxg K forsome 8 : K — Aut(H), hence 8; : H — H is given to be the
automorphism defined by 8;(h) = khk™! for all 2 € H and k € K and
the map defined by (h, k) — hk is an automorphism between H xg K
and G.

Next, we show that residually finite property is preserved under a
semidirect product.

LEMMA 2.2, If H and K are residually finite groups then a semidi-
rect product of H by K is also residually finite.

Proof. Suppose that two groups H and K are residually finite and
H x4 K is a their semidirect product for some homomorphism 8 : K —
Aut(H). For each non-identity element (h,k) ¢ H x4 K, we must
construct a finite group G and a homomorphism 7 : H x5 K — G such
that n(h, k) # eq. Let (h, k) be a nonidentity element of H %4 K.
Then both h and & are not identity elements simultaneously.

First, consider the case that h # ey and k # ex. Since H and K
are residually finite, there exist two finite groups A and B, and two
homomorphisms ¢ : H — A and ¢ : K — B such that ¢(h) # ea
and (k) # ep. Hence ¢(H) and (L) are finite subgroups of 4 and
B, respectively, such that e4yy = ea and eyx) = en. To make a
Cartesian product set ¢(H) x ¥(K) a desired finite group, define a
binary operation * on ¢(H) x $(K) as follows;

(6(h), (k) + (6(h"), (k")) = (6(hbk(h')), (k"))



282 Mee Kwang Kang

for all (R, k), (h',k') € H x K. Then it can be checked that /(H) x
¥(XK) is a finite group under the operation * such that the identity
element is (¢(eq),¥(ek)) and the inverse element of ($(h), (k) is
(#6861 (A1), 9(F ).

Let m: H xg K — ¢(H) x ¥(X) be the map defined by #({#. %)} =
{(¢(h),¥(k)) for each (h,k) € H xg K. Then

w((h, k)(B', k') = (RO (h'), kk')
— ($(hBR(K), B(kR"))
= (9(1), B(E) » (B(R'), p(K))
=x(h, k) * n(h', k).

Thus 7 is a desired homomorphism sending (k, %) to a nonidentity
element of a finite group (¢(H) x Y(K), *).

Next, let us consider the case that either of h and k is an 1dentity
element. If h = ey, there exist a finite group B and a homomorphism
¥ : K — B such that 3(k) # eg. Then the composite function (¢ o
pra) : H 49 K - K — B is a homomorphism with (¢ 0 pry}(h, k) =
(k) # ep, where pro : HXK — K is the second projection.

If it is the case that k£ = ek, let ¢ be a map from H to a fiuite group
A with ¢(h) # e4. Then the composition gopr) : HxgK — H — Ais
a desirable homomorphism. Therefore the semidirect product H xg K
1s residually finite.

In a semidirect product H x4 K, if 8 is the trivial automorphism of
H, it is a direct product of H and K.

COROLLARY 2.3. A direct product of residually finite groups is
residually finite.

3. Fiber bundles which are codimension 2 fibrators.

LEMMA 3.1([9]). Finitely generated, residually finite groups and
free groups are Hopfian groups.

It is known that fundamental groups of 2-manifolds are residually
finite [8], so that every closed 2-manifold has a Hopfian fundamental
group.
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I N is a Hopfian manifold and p : M — B is a proper map from an
arbitrary (n +k)-manifold M to a finite dimensional space B such that
each point preimage p~!(d) is homotopic equivalent to N, p: M — B
is an approximate fibration over its continuity set C C B. For the case
k=2, B\ C is locally finite and thus we can localize to the situation
which B is an open disk and p is an approximate fibration over B\ for
some b € B. Furthermore, the Hopfian property of 7;(/N') and nonzero
Euler characteristic of N force to extend the continuity set to the whole
set B.

LEMMA 3.2(4]. Every closed, Hopfian manifold with a Hopfian fun-
damental group and nonzero Euler characteristic is a codimension 2
fibrator.

Since an aspherical closed manifold N having m(/N) Hopfian is a
Hopfian manifold, every closed 2-manifold with negative Euler charac-
teristic number is a codimension 2 fibrator

THEOREM 3.3. Let N, and N, be aspherical closed manifolds with
nonzero Fuler characteristics. If both N, and N, have finitely gener-
ated free fundamental groups then their bundle structure Ny XN, is a
codimension 2 fibrator.

Proof. Let p : N;xN, — N; be the bundle projection. Since
the base space N; is a compact manrfold, p is a fibration and so
X(N1xN2) = x{(Ny)x(Nz) {(14]). Consider the homotopy exact se-
quence between three objects;

Ty 'Kn{NZ) — "‘Tn(Nl;(ATQ) — Wn(Nl) s 7rn——-l(N2) -3

By the fact that Ny and N, are aspherical, above exact sequence can
be reduced to the short exact sequence as follows;

1 - W](Ng) — 'ﬂ'](Nl ;(ArQ) — ’ﬂ’](Nl) -1

Since m3(Ny) is a free group, this short exact sequence splits and thus
m1(N1 XNy} can be represented to be a semidirect product of wy(Ny)
by 7 {N1). Moreover, free group is residually finite and Lemma 2.2
makes sure that m;( /Ny X N;) is residually finite. Of course, a semidirect
product of finitely generated groups is finitely generated and so Ny X N,
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has the Hopfian fundamental group. Thus the aspherical manifold
N; x N, is a Hopfian manifold. By Lemma 3.2, Ny x N is a codimension
2 fibrator.

By the classification theorem for compact surfaces, any compact ori-
entable surface is homeomorphic to a sphere, or a connected sum of
tori, so that it can be completely characterized by its Euler charac-
teristic. In {3], R.J. Daverman claimed that any closed manifold that
cyclically covers itself fails to be a codimension 2 fibrator. Since the
ontly covering space of torus is itself, torus is not a codimension 2 fi-
brator, that is, the closed surface with zero Euler characteristic is not.
On the other side, a closed surface with negative Euler characteristic
is aspherical and has a free fundamental group, and finite product of
such surfaces has the same attributes.

COROLLARY 3.4, If Ny and N, are finite product spaces of closed
surfaces with negative Euler characteristics then the fibre bundle Ny x N,
is a codimension 2 fibrator.

Sometimes, the Hopfian property of fundamental group of a closed
manifold makes N a Hopfian manifold. For low dimensional manifold,
J.C. Hausmann proved the following useful result;

LEMMA 3.5 ([7]). A closed, orientable n-manifold N is a Hopfian
manifold provided n < 4 and w;(N) is Hopfian.

THEOREM 3.6. Let N be a closed surface with nonzero Euler char-
acteristics. Then the fiber bundle N X S? having 2-sphere S? as a fiber
is a codimension 2 fibrator.

Proof. We will consider two cases relative to Euler characteristics
separately.

Case 1. x(N)>0

Without loss of generality, we can assume that N is a 2-sphere.
Since 2-sphere is a codimension 2 fibrator, the bundle projection is an
approximate fibration and there is a exact sequence relating the homo-
topy groups of $?, NxS? and N, which informs that Nx5? is simply
connected. Thus a simply connected space Nx5? is a codimension 2
fibrator.

Case 2. x(N)< 0

Consider the homotopy exact sequence;
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1227 (S?) = 1 (NxS?) = m(N) — 1

Since 73 (Nx5%) is isomorphic to 7;(N), it is a Hopfian group. Hence
N x 5% is a 4-manifold, so that we can apply Lemma 3.5 and thus it is a
Hopfian manifold. As described in the proof of Theorem 3.3, the Euler
characteristic of Ny XN, is the same as the multiplication of x(¥;) and
x(N;). Therefore Lemma 3.2 guarantees that N xS$? is a codimension
2 fibrator.

COROLLARY 3.7. Every product space N; x Ny of closed surfaces
with nonzero Euler characteristics is a codimension 2 fibrator.

Proof. By Corollary 3.4 and Theorem 3.6, it suffices to prove the
case that x{N;) > 0 and x(Nz) < 0. Since my(Ny x Na) & my(Ny) &
m11(N2) = my(N2), it is a Hopfian group. Lemma 3.5 and Lemma 3.2
extract the desired result.
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