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NEAR-RINGS WITH CHAIN
CONDITIONS AND NIL-DERIVATIONS

YoONG-UK CHO

1. Introduction

In this paper, most of all our near-rings N are zero-symmetric (right)
near-rings with multiplicative center Z(N). In section 2, we will intro-
duce the concepts of GDCC and GACC for ideals of N which are
more generalized concepts of DCC and ACC for ideals of N. Also
we can consider the concepts of GDCC and GACC for N-subgroups
of N. Several important properties of near-rings with GDCC(resp.
GACC) for ideals are investigated and some of the well known prop-
erties of ring with DCC{resp. ACC) or properties of near-ring with
DCC(resp. ACC) on ideals are generalized to the properties of near-
ring with GDCC(resp. GACC) on ideals. However for S-unital near-
ring, the notion of GDCC(resp. GACC') on ideals is equivalent to that
of DCC{resp. ACC) on ideals. These statements are motivated from
the H.Tominaga’s paper {18} in 1980. C.Faith {12} and I.N.Herstein
[14] studied for rings with ascending chain condition on principal an-
nihilator left ideals and descending chain condition on principal left
ideals.

We can study the chain conditions on principal N-subgroups and
on principal annhilator left ideals of near-ring as ring case, and investi-
gate relationships between K-regularity, generalized bipotence and on
GDCC principal N-subgroups for S-unital near-rings.

In section 3, we will study the derivation on near-rings, a deriva-
tion on N is defined to be an additive endomorphism D satisfying the
product rule D(ab) = D(a)b + aD(b) for all a,b in N. An element «
of N for which D(a) = 0 is called constant. For a,b in N, the symbol
[a, 8] will denote the commutator ab — ba, the symbol (a, ) will denote
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the additive commutator a + & — a — b and the symbol a o b will denote
the skew commutator ab + ba.

A derivation D will be called centralizing if [D(a), a] € Z(N) for all
ain N, skew centralizing if D(a)oa € Z(N) for all ¢ in NN, in particualr
D is called commuting if [D(a), a] =0 for all a in N, skew commuting if
D(a)oa =0for all a in N and an element a of N with [D(a), a] =0 is
called commuting. In ring theory, lots of mathematicians , for instance,
H.E. Bell and G. Mason [3] in 1987, M. Bresar {5], [6], {7] in 1993, [4]
in 1995, studied these concepts on endomorphisms, automorphisms or
derivations of prime rings which are derived commutativity.

We shall investigate several charaterizations of near-ring with deti-
vation and derive that any prime near-ring with derivation and certain
conditions becomes a commutative ring, in order to preperation for
proving our theorem, we begin with several useful lemmas.

Finally we consider nilpotent and nil derivation on N. In ring theory
these concepts are studied by L.O.Chung and J.Luh [9], {10], [11] in
1985, and P. Grzeszczuk [13] in 1992. we shall prove that for a left
strongly prime near-ring, in particular, prime near-ring with DCC on
left annihilators, every nil derivation D on a non-zero left ideal of NV is
also nil on N.

2. Near-Rings with Generalized Chain Conditions

Now we will introduce the concepts of generalized chain conditions
for near-rings that is generalized descending chain condition and gener-
alized ascending chain condition with respect to ideals and N-subgroups
of near-rings. Yor an ideal I of N and an N-subgroup M of N, we de-
note that, I'M = {z € N|I'z C M}, for all positive integer i, we have

the following ascending chain
McI'McI?Mc-—-cI*C---

We say that N satisfies the generalized descending chain condition
(abbr. GDCC) for ideals if for every descending chain My D Mz D
M; O ... of ideals of N, there exist positive integers p, ¢ such that
NPM, C M; for each positive integer ¢. Dually N satisfies the gener-
alized ascending cheain condition (abbr. GACC ) for ideals if for every
ascending chain of My C M; C M3 C --- ideals of N, there exist
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posttive integers p, g such that M, C N~? M, for each positive integer
3.

First we obtain the following remarks of the case 1, if N has the
DCC for ideals then N has the GDCC for ideals, case 2, if N has the
ACC for ideals then N has the GACC for ideals, but not conversely
in general for the case 1 and case 2.

Indeed, for the case 1, let My D M2 D M; D -+ be any descending
chain of ideals of N. Since N has the DCC for ideals, there exists a
positive integer ¢ such that M, = My, = ---, that is, M, C M, for
all positive integer 1, for each fixed positive integer p, we get

NPM, C NM, C M, C M,

for all positive integer :. Consequently N has the GDCC for ideals.
For the case 2, let M; C My C M3 C -+ be arbitrary ascending chain
of ideals. From the fact that N has the ACC for ideals, there exists a
positive integer g such that M, = M, = ---, that is, M, C M, for
all positive integer ¢ Thus we obtain for each fixed positive integer p,

NPM, C NM, C M; C My, that is, M, C N™?M,,

for all positive integer i. Hence N has the GACC for ideals. Next
there are several examples which are near-ring with GDCC or GACC
for ideals but not DCC or ACC for ideals in the following.

(1) Any near-ring with trivial multiplication satisfies both the

GDCC and the GACC for ideals.

(2) Every nilpotent near-ring has both the GDCC and the GACC
0 0 .
a 0) la € Z} is
nilpotent near-ring which has the GDCC and DCC for ideals,

similarly for N = {(2 g) lg € Q}.

for ideals, for concrete examples N = {

0
the GDCC but not the DCC for ideals.

(4) N = {(‘; g) |a € Z,q € Q} is a near-ring with the GACC
but not the ACC for ideals.

(3) N = {(31 0) lg1,¢2 € Q} is non-nilpotent near-ring, has
2
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(5) The p-adic group Zye with trivial multiplication is a near-ci-.g.
Using the similar properties of ring ideals, we see that it uas
the GDCC but not has the DCC for ideals.

PROPOSITION 2.1. The following statements are equivain:

(1) N satisfies the GDCC for ideals.

(2) For each descending chain My D Mz D M3 D -+ of ideals of
N, there exists a positive integer p such that N?M, < #i. for
all positive integer 1.

(3) Every direct summand ideal of N satisfies the GDCC for i:icals
of N.

(4) For each non-empty family F of ideals of N, there exist: an
ideal K in F and a positive integer p such that N°K = J for
all J in F satisfying J C K.

Proof. (2) = (1). 1t is obvious from the definition of GDCC for
ideals. To show that (1) = (2), assume that N satisfies the (DCC
for ideals. Let My D My; D M; D --- be a descending chain of 1druls of
N. Since N has the GDCC for ideals, there exist positive integers r and
g, we have N"K, C K, for all positive integer i. Putting p = max{r, ¢}
we see that N?K, C N"K, C K, for all positive integer .

(1) <= (38). It is clear.

(4) = (1). The condition (4) implies that N satisfies GDCC for
ideals by using the notion of GDCC with respect to any descending
chain of ideals of N. Now we will show that (1) = (4). Suppose that
N has the GDCC for ideals, and F is a non-empty family of ideals of N.
Assume the condition {4) does not hold for F. Take any K; € F. Then
there exists an element K; € F such that K; O K, but NK; Z K,.
For this K, there exists an element K; in F such that K, O K, and
N?K, ¢ K. Continuing these procedure till n — 2 step, for K,_; in
F, there exists an element K, in F we have that K,_, O K, and
N»1K,_, € K, and so forth. Thus there exists a descending chain
M, D M; D Mz D -+ of ideals such that N*"1K, _, ¢_ K, for all
positive integer n. This statement violates the hypothesis of N which
satisfles GDCC for ideals. [

We obtain the dual statements of the previous proposition as fol-
lowing statement.
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PROPOSITION 2.2. The following statements are equivalent.

(1) N satisfies the GACC for ideals.

(2) For every ascending chain My C M; C M, C --- of ideals of
N, there exists a positive integer p such that M, C N™PM, for
all positive integer 1.

(3) Every ideal of N satisfies the GACC for ideals of N.

(4) For each non-empty family F of ideals of N, there exists an
element K of F and a positive integer p such that J C N7?K
for all J in F satisfying K C J.

LEMMA 2.3. Let and N; be N3 two near-rings, and let f : N1 — N,
be a near-ring epimorphism. Then
(1) I N, satisfies the GDCC on ideals, then so is Nj.
{(2) If Ny satisfies the GACC on ideals, then so is Nj.

Proof. (1) Let K; D K, D K3 D --- be a descending chain of ideals
of N3, then we have that

fUE) D fTHKR) D fH(Ha) D oo

is a descending chain of ideals of Nj. By hypothesis of Ny which sat-
isfles the GDCC on ideals, there exists a positive integer p such that
NP f~Y(K,) C f~YK,) for all positive integer i. Using the propo-
sition 2.1 (2). This implies that {f~}{Nz)}? C f~(K,), that is,
STUNIK,) C f7YK,) for all positive integer 1. Since f is an epimor-
phism we see that Ny K, C K, for all positive integer ¢. Consequently
N, satisfies the GDCC on ideals.

(2) Assume that N, satisfies the GACC on ideals. Let K3 C K, C
K3 C - -+ be an ascending chain of ideals of N2. Then we obtain that

FFUKY CF YK Cc f I (Ks)C o

1s an ascending chain of ideals of N,. Because N; satisfies the GACC
on ideals, there exists a positive integer p such that Ny*f~(K,) C
f7Y(K,) for all positive integer ¢, from the proposition 2.2 (2). This
inclusion implies that f~(N.PK;) C f~'(K,) for all positive integer
t. Since f is an epimorphism we know that NoPK, C K, that is,
K, C N,7PK, for all positive integer :. Hence N, has the GACC on
ideals. O
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The following important statements are generalization of theorem
2.35 in [16] for near-rings.

THEOREM 2.4. Let I be a direct summand ideal of any left near-
ring N. Then

(1) N satisfies the GDCC on ideals if and only if both I and N/I
satisfy the GDCC on ideals.

(2) N satisfies the GACC for ideals if and only if both I and N/I
satisfy the GACC for ideals.

Proof. The only if parts of (1) and (2) follow from the propositions
2.1(3), 2.2 (3) and Lemma 2.3 (1) and (2). It is sufficient to prove the
if parts of the statements (1} and (2).

(1) Assume that both I and N/I satisfy the GDCC on ideals. Let
Ky D Ky D K3 D -+ be a descending chain of ideals of N. Then

KiNI>DK,nIDKynID--
is a descending chain of ideals of I and
(K + DI+ DIID>(Ks+D/ID---

is a descending chain of ideals of N/I. Applying the proposition 2.1
(2), there exists a positive integer p such that

NP{(K, + D)/I} C (K, + I)/I

and

NYK,nI)C K,nI

for all positive integer I. Taking any positive integer j and any ry,rg,... ,7
m N, for each element z in K, we obtain

?

riry - rp(z + 1) C NP(Kp +I) C Kpy, + L.

Since 0 € I, there exist kin K4, and ain I, ryry--- 152 = k +a. But,
we see that ¢ € K, so that a € K,N1. Hence

N”a C N’(KpﬂI)C K,,.HnIC KP+J"
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Finally,
Npr1r2 TeeTpT = Np(k+0,) - Npk+NPa C I{P+J‘

Thus N??z C Kpy,, that is, N* K, C K,4,. Since j is arbitrary posi-
tive integer, NP K, C K, for each positive integer i > p. By proposition
2.1, N satisfies the GDCC on ideals.

(2) Assume that I and N/I have both the GACC on ideals. Let
Ky C K C K3 C -+ be an ascending chain of ideals of Nj. Then we
get that

KiNICK;nICK;NIC:--
is an ascending chain of ideals of I and
(K + D/ ICc(IK+ D IC(Kz+D/IC:--

is an ascending chain of ideals of N/I. So that, there exists a positive
integer p such that

NY{(K,+ D)/I} C (K, +I)/I

and
NMK. Q) CK,NnI

for all positive integer ¢. Taking any positive integer § and any rq, 73, ... , s
in N, for each element z in K,y;, we obtain that
itz + D) CNPKp, + DN C K+ 1

for some k € K, and ¢ in I, rirg---rpT = k4 a. But a € Ky, from
this a € K,4, N I. Thus

NPa C NY(Kpy, NI)C K, ;NICK,NL
Finally we conclude that,
NPryrg---rpz = N?(k +a) C N?k + NPa C K,
Thus N* C K,, namely, N P Koy, C K. Since j is arbitrary positive

integer, this inclusion implies N?? K, C K, for all positive integer ¢ > p.
From proposition 2.2, N satisfies the GACC on ideals. [
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COROLLARY 2.5. Let N be a left near-ring.

(1) A finite direct sum of ideals has the GDCC on ideals if and
only if each summand has the GDCC on its ideals.

(2) A finite direct sum of ideals has the GACC on ideals if and
only if each summand has the GACC on its ideals.

A near-ring N is called S-unital if @ € Na for each ¢ in N and N
is called left bipotent if Na = Na? for all a in N. For examples, every
near-ring with left identity is S-unital and any Boolean near-ring is a
left bipotent near-ring. We note that for any ideal (resp. N-subgroup)
I of an S-unital near-ring N, we can construct that 7 = NI = N2] =
N3=....

LEMMA 2.6. Let N be an arbitrary S-unital near-ring. Then we
have:

(1) N satisfies the GDCC on ideals (resp. N-subgroup) if and
only if N satisfies the DC'C on ideals (resp. N-subgroup).

(2) N satisfies the GACC on ideals (resp. N-subgroup) if and
only if N satisfies the ACC on ideals (resp. N-subgroup).

Proof. (1) Suppose that N has the GDCC on ideals. If M; D
M, D M3 D --- is a descending chain of ideals of IV, then there exists
a positive integer p such that N?M, C M, for all positive integer 1.
Thus we conclude that

M, =NM, = N?M, = --- = N?M, C M,

for all positive integer 7, that is, there exists a positive integer p such
that
My=Mpy = -

Therefore N has the DCC for ideals. The converse statement is
proved by the previous remark. Similary we have (2). O

A near-ring N is called left K-regular if for every element a in N
there exists an element z in N and some positive integer n such that
a” n+l similarly for right K-regular. These concepts are more
general concepts of left regularity and right regularity of near-ring (or
ring), N is said to be generalized left bipotent (abbr. GLB) if for any

= zra
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element a in N, there exists a positive integer n, such that Na® =
Na™*1, similarly, for GBR. These concepts are generalized notion of
left bipotent and right bipotent.

For each a in N, Na is called a principal N-subgroup of N, and
(0: a) = {z € Nlza = 0} is denoted the (left) annihilator of a in N
which is called a principal annihilator left ideal of N relative to a. We
see that Na D Na® D Na® O - - is a descending chain of principal N-
subgroups of N and (0:a) C (0:a?)C(0:a*) C --- is an ascending
chain of principal annihilator left ideals of N.

THEOREM 2.7. Let N be any S-unital near-ring. Then the following
statements are equivalent :
(1) N is left K-regular.
(2) N satisfies the DCC for principal N-subgroups of N.

(3) N satisfies the GDCC for principal N-subgroups of N.
(4) N is GLB.

Proof. (2)<=(3) is proved by Lemma 2.6. We shall onlly show that
(1)==>(2). The remainder implications are left to the readers. Assume
that N is left K-regular. Let a in N and consider

NaDdDNa® DO Na® D -

1s a descending chain of principal N-subgroups of N. Since N is left
K-regular there exists an element = in N and a positive integer n such
that a™ = za"™*1. On the other hand

Na® = Nza™*!' ¢ Na™t! = Naa® C Na™.

Thus we obtain the equality Na® = Na™*!. Using the similar method
continnously, we have the following :

Nan-{-l =Nan-|-2 :Nan+3 —_.

Therefore, N satisfies the DCC for principal N-subgroups of N. O
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3. Near-Rings with Associative-Derivations and
Nil-Derivations

For any subset S of N, we write Z(S) the center of S and put A is
a non-zero N-subgroup of N. We now introduce the following special
near-rings which are well known facts in [16] : A near-ring is reduced if
N has no non-zero nilpotent elements, is prime if a,b € N and aNb =0
implies @ = 0 or b = 0 and has the insertion of factors property (abbr.

IFP) provided that ab = 0 implies azb =0 for all z in N.

LEMMA 3.1. Let N be any near-ring.

(1) IfN is reduced then N has the IFP.
(2) N has the IFP if and only if for any a in N, (0 : a) is ideal of
N if and only if for any § C N,(0: 5) is an ideal of N.

A derivation D on N is said to be nilpotent if there is a positive
integer n such that D"(a) = 0 for all @ in N. The least such number
is called the indez of nilpotency of D, denoted by n = nil(D). D is
said to be nil if for each @ in N, there is a natural number n (depend-
ing on a) such that D™(a) = 0. The least such number is called the
index of nilpotency of D with respect to a, denoted by nil(D,a). Ob-
viously nilpotent derivation is nil, but not vice versa. The latter can
be seen from the following example : Consider Riz], the near-ring of
polynomials over a commutative ring R. Let D be ordinary derivation
: D(z™) = nz™~ 1. It is routine to see that D is nil but not nilpotent.

THEOREM 3.2. Let D be a derivation on a reduced near-ring N.
Then every annihilator ideal is invariant under D. Moreover, we have
ascending chain of annihilator ideals taking I repeatedly.

Proof. Let S be any subset of N. Consider (0 : §) as annihilator
ideal of N with respect to 5. We must show that D{(0: S)} C (0: S).
In fact, let x € (0 : §), that is, s = 0 for all s in S. Taking D, we have
0 = D(xs) = D(z)s + sD(z). Multiplying s to the right side of this
equality, 0 = D(z)s*+zD(s)s. Since N is reduced by Lemma 3.1 (1), N
has the IFP, so that D(s)s = 0. Hence we get D(z)s? = 0 for all s in
S. Again multiplying D(z) to the left side of D(z)s? = 0,(D(z)s)? = 0.
Because N is reduced we see that D(z)s = 0 for all s in S. Therefore
D(z) € (0: 5). Moreover, let s = 0 for all s in S. Taking derivation
D,0 = D(zs) = D{(z)s + zD(s). Multiplying = to the left side of this
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equality, 0 = zD(z) + 2°D(s). Since N is reduced, we apply lemma
3.1, so we get zD(z)s = 0 and z2D(s) = 0. From this latter equality
we get zD(s) = 0 for all s in § by using reducidility and multiplying
D(s) to the right side. Consequently we obtain zD(s) = 0. Hence
z € (0: D(5)). The proof of this last statement is that (0 : D(5)) C
(0 : D*(S)).

Next we put IXS5) = 5 and again, taking the above procedure
to §” we obtain the inclusion (6 : §') C (0 : D(S’)), that is to say,
(0: D(S)) C (0: D*(S)) if we can repeat this procedure continuously,
we have the following ascending chain of annihilator ideals of IV :

(0:5)YC(0:D(S))c(0:DHS) C---
In particular for any a in N we obtain that
(0:a)C(0:D(a))C(0: D%a)) C ---

as ascending chain of principal annihilator ideals of N by D taking
repeatdly. O

From the Theorem 3.2, we have the following property of nil deriva-
tion.

COROLLARY 3.3. Let D be a nil derivation on a reduced near-ring
N. Then N has the ACC on principal annihilator ideals of N by taking
D repeatedly.

LEMMA 3.4, Let D be a derivation on N. Then N satisfies the
following distributive law

a{ D(be)) = a(D(b)c + bD(c)) = aD(b)c + abD(c)
for all a,b,¢ in N.

Proof. From the expression for D({ab)c) = D(a(bc)), we have the
result. O

LEMMA 3.5. Let D be any derivation on N. If a in A is not a right
zero divisor and a Is commuting or skew commuting element then for
any element b in N,(a,b) is constant.

Proof. From the equality (a + b)a = a? + ba, we obtain
D(a}a+ D(b)a + aD(a) + 8D(a) = D(a)a + aD(a) + D(b)e + bD{a).
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First for a is commuting this equation reduces to
{D(a) + D(b) — D(a) - D(b)} =9,

that is, D(a + b — a — b)a = 0. Since a is not a right zero divisor
D(a,b) =D{a+b-a—b)=0.

Second for a is skew commuting, since D{a)a = —aD(a), above
equation reduces to

D(b)a — D(a)a = —D(a)a + D(b)a,

that is, D{(a + & — a — &) = 0. Because a is not a right zero divisor
D{a,b) = D(a + b — a —~ b) = 0. Therefore, in the above both case, we
see that (a,b) is constant., [

PROPOSITION 3.5. Suppose a near-ring N has no non-zero divisors
of zero. If N has a nontrivial commuting or skew commuting derivation
D, then N becomes an abelian near-ring.

Proof. Let ¢ be any additive commutator in N. Then ¢ is a con-
stant by Lemma 3.4. Moreover, for any z in N, cz is also an additive
commutator, hence also a constant. Thus we have that 0 = D{cz) =
D(c)z + eD(z) and cD(x) = 0. Since D is nontrivial, there exists y
in N such that D{y) # 0. So we see that ¢D(y) = 0. Applying N
as no nonzero divisors of zero we conclude that ¢ = 0. Hence N is
abelian. [

THEOREM 3.6. Let N be a prime near-ring with IFP.
(1) If (A, +) is abelian, then N is an abelian near-ring.
(2) If(A,) is commutative, then N is a commutative near-ring.

Proof. (1) Let x,y be in N and a in A. Since A is an additive abelian
N-subgroup we have the following equality :

za + za + ya+ ya = za + ya + za + ya.

After we take the left and right cancellation, this equation becomes
(z,y)a = (x+y—z—y)a = 0. From the fact N has the IFP,(z,y)Na =
0. Taking a is a nonzero element of A and using the fact N is prime,
then (z,y) = 0. Whence N is an abelian near-ring.
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(2) Let z,y be any elements in N and take a and b are both nonzero
element of A. Since A is a commutative N-subgroup, we obtain the
following equations :

[z, y]ab = syab—yzab = zyab—ybra = zayb—ybza = ybra—ybra = 0.

From the fact N has the IFP, [z,ylaNb = 0. We can apply that N
is prime, then [r,yle = 0. Again from the fact that N is the IFP,
we have [z,y]Na = 0, and again applying the property N is prime,
consequently we get {z,y} = 0. Therefore N is commutative. [

We note that in Theorem 3.6. for any prime near-ring N with IF'P,
if A is nonzero additive abelian commutative N-subgroup, then N
becomes a commutative ring.

A near-ring N is said to be left strongly prime if every non-zero
left 1deal of N contains a finite set whose left annihilator ideal is zero.
Reduced prime Goldie near-rings and reduced prime near-ring with
DCC on left annihilators are examples of left strongly prime near-
nngs. An ideal I of N satisfying D(I) C I is called a D-ideal.

LEMMA 3.7. Let D be a derivation on a near-ring N. Then, for each
positive integer k, there exist integers ¢; (0 < ¢ < k) such that

k
DX¥a)y =D ex 0¥ (zD'(y))

1=0
1=0 for all z,y in N.

Proof. We proceed by induction on k. Obviously, D(z)y = D(zy) —
zD(y). Hence, we can put ¢1,9 = 1 and ¢;,; = —1. Since

D*z)y = D(D*'(z))y = D(D*}(z)y) - D*"'(2)D(y),
we can choose ¢;, as follows that
ko = Ch1,0 = 1,5k = ~Chr p—1 =(~1)  and . = cxoyi—ch-141
(0 < ¢ < k). Consequently we see that

k
D*a)y = 3 ex, D" (e D'(y))

1=0

forall z,yin N. DO
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PROPOSITION 3.8. Let N be a left strongly prme near-ring and D

a derivation on N. If D is nil on a non-zero D-left ideal of N then D
is a nil derivation on N.

Proof. Let I be a non-zero D-left ideal of N. By hypothesis, I con-

tains a finite set F° with (0 : F') = {0}. There exists a positive integer
m such that D™(z) = 0 for all z in F. Let a be an arbitrary element of

N.

Then we can choose a positive integer n such that D*(aD*(z)) =0

for all {0 < ¢ <m —1) and all z in F. Then, by Lemma 3.7, we have
D™= (g} = 0 for all z in F, and therefore D™*+*~1(a)F = 0. Since

(0

: F') = {0}, we conclude that D™+"~!(a} =0, for all a in N, which

proves that D isnilon N. O

o

10.
11.
12.
13.
14.

1S5.
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