FINITE TYPE CURVES IN THE LORENTZ MINKOWSKI PLANE

  • CHUNG, HEI-SUN (Dept. of Mathematics, Chonnam National University) ;
  • KIM, DONG-SOO (Dept. of Mathematics Education, Chonnam National University) ;
  • SOHN, KYU-HYUN (Dept. of Mathematics Education, Chonnam National University)
  • Received : 1995.05.01
  • Published : 1995.07.30

Abstract

Keywords

Acknowledgement

Supported by : Ministry of Education

References

  1. Total mean curvature and submanifolds of finite type Chen, B.Y.
  2. Kodai Math. J. v.8 Finite type submanifolds in pseudo-Euclidean spaces and applications Chen, B.Y.
  3. Tamkang J. Math. v.17 Finite type pseudo-Riemannian submanifolds Chen, B.Y.
  4. Archive Math. v.62 Some classification theorems for submanifolds in Minkow ski space-time Chen, B.Y.
  5. Proceedings of the Conference on Geometry and Topology of Submanifolds Curves of finite type Chen, B.Y.;Deprez, J.;Dillen, F.;Verstraelen, L.;Vrancken, L.
  6. Geometry and Topology of Submanifolds, II Chen, B.Y.;Deprez, J.;Dillen, F.;Verstraelen, L.;Vrancken, L.
  7. Bull. Austral. Math. Soc. v.42 Ruled surfaces of finite type Chen, B.Y.;Dillen, F.;Verstraelen, L.;Vrancken, L.
  8. Bull. Austral. Math. Soc. v.44 On spectral decomposition of immersions of finite type Chen, B.Y.;Petrovic, M.
  9. Differential equations, Dynamical systems and Linear algebra Hirsch, M.W.;Smale, S.
  10. Bull. Korean Math. Soc. v.31 no.2 Space curves satisfying ${\delta}H$ = AH Kim, D.S.;Chung, H.S.
  11. Semi-Riemannian Geometry with Applications to Relativity O'Neill, B.