Acknowledgement
Supported by : Ministry of Education
References
- Math. Proc. Camb. Soc. v.86 Cut points, conjugate points and Lorentzian comparison theorem Beem, J.K.;Ehrlich, P.E.
- Marcel Dekker Pure and Applied Math v.67 Global Lorentzian geometry Beem, J.K.;Ehrlich, P.E.
- Comparison theorems in Riemannian Geometry Cheeger, J.;Ebin, D.G.;North Holl. Publ. Co
- Manuscripa math. v.31 Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds Chicone, C.;Ehrlich, P.E.
- Contemporary Math. of AMS v.170 Form the Riccati equation to the Raychaudhuri inequality Ehrlich, P.E.;Ki, S.B.
- Comm. Korean Math. Soc. v.6 A facal comparison theorem for null geodesics Ehrlich, P.E.;Kim, S.B.
- J. of Geometry and Physics Pitagoras Editrice v.6 A focal index theorem for null geodesics Ehrlich, P.E.;Kim, S.B.
- Math. Ann. v.252 Jacobi tensors and Ricci curvature Eschenberg, J.H.;O'Sullivan, J.J.
- J. Diff. Geom. v.14 A generalization of Myers theorem and an application to relativistic cosmology Galloway, G.J.
- Lecture notes Riemanniansche Geometrie im Grossen, Vol.55 Gromoll, D.;Klingenberg, W.;Meyer, W.
- K-Jacobi fields and Lorentzian comparison theorems Kim, S.B.
- J. of the Korean Math. Soc. v.31 A focal Myers-Galloway theorem on space-times Kim, S.B.;Kim, D.S.
- Math. Ann. v.276 On the existence and comparison of conjugate points in Riemannian and Lorentzian geometry Kupeli, D.N.
- Math. z. v.198 On conjugate and focal points in Semi-Riemannian geometry Kupeli, D.N.
- An introduction to the theory of ordinary differential equations Leightan, W.
- Duke Math. J. v.8 Riemannian manifolds with positive mean curvature Myers, S.B.
- Comparison and Oscillation theory of linear differential equations Swanson, C.A.