Acknowledgement
Supported by : Ministry of Educatíon
References
- Proc. Amer. Math. Soc v.10 A plane continuum no two of whose non-degenerate subcontinua are homeomorphic : an application of inverse limits Anderson, R.D.;Gustave Choquet
- Proc. Amer. Math. Soc v.12 A chainable continuum no two of whose nondegenerate subcontinua are homeomorphic Andrews, J.J.
- Duke Math. J. v.15 A homogenous decomposible plane continuum Bing, R.H.
- Fund Math. v.221 Ploblem 2 Canster, B.;Kuratowski, C.
- Duke Math. J. v.21 Inverse limit spaces Capel, C.E.
- Compositio Math. v.4 Entwicklungen von Raumen und ihren Grupen Freudenthal
- Pac. J. Math. v.68 A characterization of solennoids Hagopian, C.L.
- Ann. of Math. v.70 Embeddings of inverse limits Isbell, J.R.
- The axiom of choise Jech, T.J.
- Topology, Vol I Kuratowski, K.
- Topology, Vol II Kuratowski, K.
- Glasnik Mat. v.23 A note on inverse sequences of ANR's Loncar, Ivan;Markesic, Sibe
-
Trans. Amer. Math. Soc.
v.109
${\epsilon}-mappings$ and onto polyhedra Markesic, S.;Segal, J. - Fund Math. v.221 Ploblem 14 Majurkiewicz, M.
- Trans. Amer. Math. Soc. v.63 An indecomposible plane continuum which is homeomorphic to each its nondegenerated subcontinua Moise, E.E.
- Trans. Amer. Math. Soc. v.157 Multicoherence techniques applied to inverse limits Nadler, S.B.
- Modern General Topology Nagata, J.
- J. London. Math. Soc. v.39 Mapping norms and indecomposability Segal, J.
-
De
$R^n$ -adische Voortvrenging van Algemeen-topologische Ruiten met Toepassingen op de Constructie van niet Splitsbare Continua Van Heemert, A. - Amer. J. Math. v.52 A continuum every subcontinuum of which separates the plane Whyburn, G.T.