Rhizopus oryzae의 생리.생화학적 카드뮴 해독기작

Physio-biochemical Detoxification Mechanism against Cadmium in Rhizopus oryzae

  • 발행 : 1995.03.30

초록

Rhizopus oryzae의 카드뮴 적응 및 해독기작과 이에 관련된 세포내 생리 생화학적 변화를 조사하였다. R. oryzae는 카드뮴 첨가농도가 증가함에 따라 거의 비례적으로 잠복기가 길어졌다. 카드뮴의 해독에 관련하는 system은 카드뮴 첨가 배양시에만 적응기 중에 특이하게 유도, 생성되어져 카드뮴 결합단백질의 성격을 지닐 것으로 추정되는 2종류의 단백질과 동일한 시기, 조건하에서 유의하게 증가되는 무기인산중합체 pool에 의하여 1차적으로 운용되어질 것으로 사료되며, 2차적, 보완적 system은 ACPase의 derepression 그리고 phosphatidyl serine의 합성증가 등의 방법을 통하여 운용될 것으로 생각된다. 또한 총지질화합물의 조성변화 등과 같은 다양한 생리 생화학적 물질대사 경로의 변화를 일으켰다. 이러한 변화의 총화로 크게는 형태적 변화까지 일어나 카드뮴 적응 및 해독에 필요한 성장형태로서 여러 가지 산물 생성에 유리한 dispersed filamentous type을 취하였다.

The mechanism of cadmium adaptation and detoxification in Rhizopus oryzae was investigated. The lag phase was lengthened as the concentration of cadmium increased. Detoxication of cadmium were postulated to be primarily operated by the induction of two cadmium binding proteins and increment of inorganic polyphosphate pools in adaptation phase. After adaptation, inorganic polyphosphate system has been involved in turnover and compartmentalization. The secondary system for cadmium adaptation and detoxification might be derepression of ACPase activity and the synthesis of phosphatidyl serine. It has been considered that the overall changes for cadmium adaptation and detoxfication eventually influence on the morphology, resulting in the dispersed filamentous type which may be the most advantageous form.

키워드

참고문헌

  1. Appl. Environ. Microbiol. v.44 Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulfide Aiking, H.;Kok, K.;van Heerikhuizen, H.;van Triet, J.
  2. Can. J. Biochem. Physiol. v.37 A rapid method of total lipid extraction and purification Bligh, E.G.;Dyer, W.J.
  3. Biochem. Biophys. Acta. v.1055 $A^{31}P-NMR$ study of phosphate transport and compartmentation in Candida utilis Bourne, R.M.
  4. J. Bacterol. v.155 Light mediated regulation of phosphate synthesis in Rhodospeumonas sphaeroides Campbell, T.B.;Lueking, D.R.
  5. An. Soc. Microbiol. v.152 Asparagine-linked carborhydrate does not determine the cellular location of Yeast vacuolar nonspecific alkaline phosphatase Clark, D.W.;Tkacz, J.S.;Lanpen, J.O.
  6. J. Cell. Biol. v.66 Transport ATPase cytochemistry: Ultrastructural localization of potassium-dependet and potassium-independent phosphatase activities in rat kidney cortex Ernst, S.A.
  7. Ann. Rev. Biochem. v.55 Metallothionein Hamer, D.H.
  8. J. Biol. Chem. v.66 The colorimetric determination of phosphorus Fiske, C.H.;Subbarow, Y.
  9. Science v.225 Cadmium-resistant Pseudomonas putida synthesizes novel cadmium proteins Higham, D.P.;Sadler, P.J.
  10. Methods in microbiology, 5B Hughes, D.E.
  11. Appl. Environ. Microbiol. v.41 Cadmium-binding component in Escherichia Coli during accumulation to low levels of this ion Khazaeli, M.B.;Mitra, R.S.
  12. Methods Enzymol. v.10 Determination of acidlabile sulfied and sulfhydryl groups King, T.E.;Morris, R.O.
  13. The Biochemistry of inorganic polyphosphatase Kulaev, I.S.
  14. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$ Laemmli, U.K.
  15. Studies on the regulation of phosphate metabolism in yeast (Saccharomyces uvarum) Lee, K.S.
  16. Kor. J. Limnol. v.2 Cadmium detoxification mechanism of Cd-resistant Bacillus sp. Isolated from industrial sewage Lee, K.S.;Kang, S.W.;Kim, Y.H.;Kim, E.A.;Kim, K.H.;Choi, Y.K.
  17. Kor. J. Microbiol. v.28 Physio-biochemical changes correlated with cadmium adaptation and detoxification mechanism in Klebsiella aerogenes Lee, K.S.;Song, I.G.;Park, Y.S.;Yoo, S.A.;Choi, Y.K.
  18. J. Biol. Chem. v.193 Protein measurement with the Folin phenol reagent Lowry, O.M.;Rosenbrough, N.J.;Farr, A.L.;Randall, R.J.
  19. J. Bacteriol. v.121 Molecular mechanisms of accomodation in Escherichia coli to toxic levels of $Cd^{2+}$ Mitra, R.S.;Gray, R.H.;Chin, B.;Berenstein, I.A.
  20. Plant and cell physiol. v.2 Distribution and turnover of phosphate compounds in growing chlorella cells Miyachi, S.;Tamiya, H.
  21. Mycol. Res. v.94 Relationships fungal growth, morphology and fumaric acid production by Rhizopus arrhizus Morrin, M.;Ward, O.P.
  22. J. Biol. Chem. v.10 Glycoprotein nature of yeast alkaline phosphatase Onishis, H.R.;Tkacz, J.S.;Lampen, J.O.
  23. J. Biol. Chem. v.161 A method for the determination of deoxyribonucleic acid, ribonucleic acid and phosphoprotein in animal tissue Schmidt, G.;Tannhauser, S.J.
  24. Ann. Rev. Biochem. v.41 Biochemical effects of mercury, cadmium,and lead Vallee, B.;Ulmer, D.D.