Journal of the Korean Institute
of Industrial Engineers
Yol20, No.T, March, 1954, 133

PR

IntervalS ©}£3} Conditional Constraints<]
Propagation €38]&

A PROPAGATION ALGORITHM FOR INTERVAL-BASED CONDITIONAL
CONSTRAINTS

H7a
Kyeong Taek Kim*

r Abstract

Condifional constraints are frequently used to represent relations. To use these
conditional constraints, it is necessary to develop an appropriate logic in which these
conditional constraints can be represented and manipulated. Nevertheless, there has
been little research that addresses interval-based conditional constraints. The proposed
approoch addresses the use of conditional constraints involving intervals in constraint
networks. Two algorithms are presented: (1) a propagation algorithm for an interval-
based conditional constraint, which is similar to one for an exact-value conditional
constraint; {2} @ propagation algorithm for interval-based conditional constraints which
satisfy some conditions. The former con be applied te any condifional constraint.
However, with the former algorithm, conditional constraints are vsually categorized into
the cases that they cannot be propagated. After investigating several methods in which
most conditional constraints can be propagated, we propose the latter algorithm under
certain condifion that usually results in smaller resulfing design space comparing to the

former.

134 379

1. Introduction

As engineering design progresses from the
early stages of requirement formulation toward
the detailed design stage, the constraints grows
not just in volume but in complexity. Growth
in volume means that an object which is
represented by a few aggregate constraints at
the early design stage is elaborated into tens
or hundreds of detail constraints in the detailed
design stage. The growth in complexity comes
from inserting interrelationships that are miss-
ing at early stages. In such complex designs,
i is difficult to keep track of all relevant
constraints and variables, and to understand the
interrelationships among variables and their
tradeoffs. In such complex design environ-
ments, constraint networks can help the
designer in the following functions:

¢ to test the truth value of each constraint

* to maintain global consistency

* to find values for unknown variables from

the set of given variable values

* 1o reduce the design space without loss of

any feasible solution,

So far constraint networks have successfully
supperted the above functions for the areas
where they have been applied.

The mazin inference used in engineering
design varies with the design stage. At the
earlter design stages, it is common that not
only some design parameters but also some
variable values are imprecise, Therefore inter-

vals are probably used frequently. As the

design progresses, more specified alternatives
will emerge and replace continucus domains,
At this stage, descrete label inference is more
likely actively used. At the detailed design
stage, specific value for each variable should
be picked., Therefore exact-value inference is
more appropriate at the latrer stage,

Most research on constraint problems pro-
vides solution rechniques for handling and
propagating constraints with exact-value vari-
ables. But there are some limitations to apply
these techniques to engineering design prob-
lems.

First, one of the charactetistics of engineer-
ing design problems is inequality constraints,
In exact-value constraint system, the upper
bound and the lower bound of a variable arc
used only to test if a specified ot deduced value
falls between these bounds. There is, therefore,
the potential of relevant informarion being lost,

Second, the design process in an engineering
design problem expressed as a constraint
network means the process of finding a set of
variable values which satisfies all the constraints
in the network, Duting the design process it
may be impossible to pinpoint the presumed
values for some variables. A design, which is
incomplete, may have some variables which
cannot be assigned exact values because the
designer only has a vague idea for the values
of those vartables. The system should utilize
the vauge idea.

Third, the engineering problem usually in-

cludes not only variables with disctere domains

Interval-g]88 Conditional Constraints®] Propagation 28 & 135
o]

but also wvariables with continuous domains,
Pruning continuous domain by the process
which is used to prune discrete domains would
be computationally prohibitive,

The ahove would therefore indicate that
there are some considerable benefits that can
tesult from the use of an interval approach to

engineering design,

2. Interval Approaches in Related
Areas

A few systems have used interval arithmetic
to deal with continuous teal numbers, CHIP
{Constraint Handling In Prolog) is a language
on the finite domain and linear rational number
[1,2,3]. CHIP can deal with linear equations
and inequalities such as <, {, 2,), over
natural numbers. ALICE [4] is a problem-
solver where problems are stated in 2 mathemat-
ical language based on set-theory, first-order
logic, and graph theory. Combinatorial prob-
lems can be solved by ALICE. It has a
procedure for dealing with linear equations and
inequalitics(f-). In ALICE the procedure
results in addition of sevetal constraints to its
progtam. Hyvonen [5] defines the term
‘interval-consistent’ for a constraint and con-
straint network, He describes the characteristics
of interval arithmetic compared with value
arithmetic, LIC(Labeled Interval Calculus) [6,7,8,
9] is a formal system that performs interval
inference about sets of artifacts under several

operation conditions. By the use of labels, it

represents the meaning of the relationship
between variables and its intervals, LIC is used
as the basis of 2 program called “mechanical
design compiler,” The compiler provides the
user with a language in which design problem
for systems to be built of cataloged compo-
nents can be quickly and easily formulated.
Navinchandra and Rinderle [10] show how
interval propagation can help the designer by
two-bar truss example. Rinderle and Krishnan
[11] propose an interval-based approach,
which is augmented with monotonocity and
dominance principles. The goal is to idenrify
active constraints in complex design problems
with objctive functions, CASCADE-T [12] 1s
a computer-based tolerance synthesis system
that employs a constraint propagation similar
to CONSTRAINTS [13].

It is found from the above liteature review
that conditional constraints are not allowed on
the basis of intervals, Current interval-based
systems would stop or ignore if they meet
conditiona]l constraints, However, condirional
constraints are frequently used to represent
some relations. In this paper, we propose two
algotithms: (1) a propagation algorithm for
an intetrval-based conditional constraint, which
is similar to one for an exact-value conditional
constraint: (2) a propagation algorithm for
interval-based conditional constraints which

satisfy some conditions.

136 A7

3. Conditional Constraints

Conditional information of the form “if @
then W", is referred to as implication, condi-
tional, or conditional constrzint, w is called the
antecedent and ¥ is called the consequent, The
interpretation of the conditional constraint “if
@ then ¥” is hatdly obvious, Intuition and
common sense do not provide a clear answer.
Nevertheless an interpretation is required to use
this opetator. In Boolean Logic, “if @ then
¥" is interpreted as being equivalent to *{not
@} or ¥
material implication is represented by “=7.
Table 1 shows the truth value of “@=2¥" in

Boolean Logic [14]. Boolean Logic is a two-

the material implication. The

*

valued logic, where the truth value of any logic

formula is either true or false,

Table 1. Truth Tables of «=%¥ in Boolean
Logic

M (M |A|A |
M |m ||
A A=

3.1 Definitions on the Sattsfiability Values
It is pointed out that two-valued logic is
not appropriate for interval-based approach
[15]. Kim [15] suggests a three-valued logic
for an interval-based approach. In three-valued
logic, the following satisfaibility values are

used:

Definition 1: valid, satisfiable, unsatisfiable

A constraint is valid in the intetval-based
logic if it is {rue for any tuples in the current
design space in the exact-value logic with
single numbers,

A constraint is safisfiable in the interval-
based logic if it is frue for some tuples and
false for other tuples in the current design
space in the exact-value logic with single
numbers,

A constraint is unsafisfiable in the interval-
based logic if it is false for any tuples in the

current design space in the exact-value logic

with single numbers,

Since a three-valued logic rather than a two-
valued logic is employed, the satisfiability value
of the conditional constraints should be de-
fined. For further discussion, subset relation
between two interpretations is defined as

follows:

Definition 2: subset relation between fwo
wnerpretations

An interpretation I is a subset of an
interpretation] if and only if for each variable
x, the interval of x under I is a subset of the

interval of x under J.

3.2 Satistiability Value of a Conditional
Constraint

The satisfiability value of 2 conditional

constraint is determined by the satsfiability

value of its antecedent and its consequent as

Interval & ©]-23 Conditional Constraints®] Propagation G 1El % 137

follows:

® A conditional constraint is valid if and
only if
the antecedent is snsalisfiable, or
both the antecedent and the consequent
are valid.

» A conditional constrzint is safisfiable if
and only if
the antecedent is valid and consequent is
satisfiable, or
the antecedent is safisfiable.

e A conditional constraint is unsatisfiable if
and only if
the antecedent is valid and the consequent

is unsatisfiable,

3.3 Satisfiability Values of Antecedents
and Extension of Interpretation

For a conditional consteaint in which the
satisfizbility value of the antecedent is valid
under the curtent interpretation, there is no
more need to re-evaluate the antecedents again
in the following cycles as long as the given
constraints and intervals are deleted or modi-
fied, This is because under any interpretation,
which is a subsel of the current interpretation,
the satisfiability value of the antecedent remains
valid as long as the given constraints and
intervals are deleted ot modified. Addition of
constraints neither change the satisfiability
value of the valid antecedent nor affect the
fact that valid antecedent does not change any
interpretation,

If the antecedent is valid, the consequent is

evaluated to determine the satisfiability value
of the conditional constraint and whether the
current interpretation is extendible.

For a conditional constraint in which the
antecedent is snsaftsfiable under the current
interpretation, there is no need to re-evaluate
the antecedent and the consequent again as
long as it is under any interpretation which is
a subset of the current interpretation, This is
because under any interpretation which is a
subset of the current interpretation, the satisti-
ability value of umsatisfiable antecedent docs
not change,

For a conditional constraint in which the
antecedent is satisfiable, the antecedent should
be re-evaluated at the every cycle as long as
any variable value in the antecedent changes.
For the constraint with a salisfiable antecedent,
extending the interpretation using its conse-
quent may restrict unnecessarily the design

space, For example, consider the following

constraints:
Cl: w={24]
C2: x={24]
C3: y=[35]
c4: z=[1,3]
Ch: x=y=>1=w

From the above, the antecedent of CH 15
satisfiable, 1f the current interpretation is
extended using the consequent of C5, then z=
(23] and w=[2,3] will be deduced. Under
the extended interpretation, the reduced design
space is!

w=1[23]

138 774

A

o

v=[
v=[3
(2,

However, there are tuples, such as {wxy,
z20=¢4,25,1> which satisfy all the above

constraints and are out of the reduced design

¥

3
3

L N |

space. This example shows that the interpreta-
tion extended using a consequent may exclude
some feasible solutions if its antecedent is

satisfiable,

3.4 An Algorithm for Extending Interpre-

tation using a Conditional Constraint

The algorithm shown in Figure 1 is pro-
posed to determine the satishability value of
an interval-based conditional constraint and to
extend the interpretation where appropriate,
Most conditional constraints have satisfiable
antecedents. In this algorithm conditional con-
straints with safisfrable antecedents cannot be
ptopagated,

If a consequent with a safisfiable antecedent
cannot be used for extending the current
mterpretation, it will be disadvantageous in that
no further information would be deduced from
the conditional constraints with satisflable
antecedents, What is more desirable is that a
method is developed to extend the interpreta-
tion using a consequent with a safisfiable
antecedent under some circumstances, In the
following section the methods in which condi-
tional constraints with satisfiable antecedents

are utilized will be discussed,

4. Extended Interpretation using Con-
straints with Satisfiable Antecedents

Thete ate two methods in which the
extension of the current interpretation using a
consequent with a safzsfiable antededent does
not exclude any feasible solution, The first
method is to partition each interval into several
sub-intervals based on the antecedents, and to
compose exhaustive combinations and to pro-
pagate each combination. For example consider

the following constraints:

Cl:x=[0,7]
C2:y=[10,20]
C3:2=[0,5]

C4:v=[36]
Chix<2zr=v,

C6:x)2 and x<=2=2Qu
C7y<15=w=y.

C8:%>15 and y<202w=2®y515.
C9:y>20=w =30 y6 35,

Using the antecedents of the above con-
straints, the following exhaustive combinations
can be made:

x=[0,2] and y=[10,15],
¥=[02] and y={15,20],
x=[02] and y=[2025],
x=[02] and y={10.15],
x=[0,2] and y={15,20],
¥=[0,2] and y=1[20,25].

For each combination, one propagation
proceeds, This method is a kind of generate-
and-test method. Although it seems to be very

simple, the expected computing time is combi-
ple, putng

Inerval-g o] 83 Conditional Constrainis?] Propagation 42 & 139

For each interval-based conditional constraint, find the satisfiability value of its antecedent.
* For 2 conditional constraint with an unsatisfiable antecedent, record the conditional constraint as being
valid and do not consider it any mote until the user changes constraints or intervals of variables.
¢ For a conditional constraint with a valid antecedent, find the satisfiability value of its consequent.
1. If the consequent is walid, record each resulting variable value and record the conditiona) constraint
as being valid.
2. If the consequent is wnsafisfiable, exit this algorithm and report that a constraint violation is detected.
3. If the consequent is safisfiable, extend the cutrent interpretation using the consequent and find the
satisfiability value of the consequent under the extended interpretation.
3.1 If the consequent becomes valid, record each resulting variable value and record the conditional
constraint as being valid.
3.2 If the consequent is still safisfiable, record each resulting variable value and record the conditional
constraint as being satisfiable,
3.3 If the consequent becomes unsatisfiable, exit this algorithm and report that a constraint violation
is detected.
For 2 conditional constraint with a safésfiable antecedent, record the conditional constraint as being
salisfiable.

Figure 1. An Algorithm for Extending Interpretation using a Conditional Constraint

natorially explosive, For example, for the # are given, Then, the propagation will he

interval variables in which each interval is proceed as follows:

instantiation 1: x=1[0,2],
x=[02] and y=110,15],
x=[02] and y=[15.20],
x=[02] and y=1{20,25],
instantiation 5. x=[25],
x=[25] and y=[10,15},
x=[25] and y=[1520],
x=[25] and y=[20,25].

If the propagation of instantiation 1 results

divided into # sub-intervals, the whole con-
straints should be evaluated approximately m” instantiation 2:
times, if the interpretation is extended no more. instandadon 3:
This method may therefore be intractable not instantiadon 4:
only in tetms of computation time, but also in
terms of requiring space for recotding the instantiation 6°
whole set of combinations and each set of instantiation 7:
results, instantation 8:

The second method is to partition an interval

into several sub-intervals based on the an-
tecedents, and to propagate the first sub-
interval, and after the propagation is finished,
to propagate the next sub-interval and so on.

For example, assume that the above constraints

in a constraint violation, instatiation 2 through
4 will not be propagated. In the same way, if
the propagation of instantiation 5 results in a
constraint violation, instantiation § through 8

will not be propagated. Thetefore if this

140 473

method is applied to the example, the number
of porpagation will be at least two and at most
eight,

This method s a kind of backtracking
method, Compared to the first method, this
method can utilize the intermediate results if it
is saved. However, if this method is applied to
constraints with # interval variables in which
each interval is divided into m sub-intervals as
a result of conditional constraints, each con-
straint should be evaluated approximately m
(m"-1}/(m-1} times in the worst case, if the
interpretation is extended no more, In the case
that further restrictions are imposed on the
current constraint network as the designer's
knowledge for the artifact is accimulated, all
the set of sub-intervals that are not proved to
be infeasible should be kept. If all sets of
feasible sub-intervals are recorded, large record-

ing space is usually required.

4. An algorithm for Extending an
Interpretation Using Grouped Con-
ditional Constraints

The two approaches described in the previ-
ous section suffer from computational complex-
ity and large memory requirements. The
approach proposed in this paper is to maintain
only one interval for each variable while the
design space can be reduced by the extension
of interpretation using 2 group of conditional

constraints,

Definition 3: Sufficient Antecedent Space

A group of conditicnal consttaints has a
sufficient antecedent space when every tuple
in the space, which is Cartesian product of
variable values under the current interpretation,

satisfies at least one antecedent.

Note that when a group of conditional
constraints consists of a single conditional
constraint with valid antecedent, it has a
sufficient antecedent space. For this constraint,
there will be no difference in theit results

between the case that the algorithm shown in

.Figure 1 is applied and the case that the

algorithm that will be proposed in the next
section is applied, If a group of conditional
constraints consists of a single conditional
constraint with satisfiable or wnsalisfiable, it
does not have a sufficteni antecedent space,
For this conditional constraint, the algorithm
that will be proposed in the next section cannot
be applied. Instead, the zlgorithm shown in
Figure 1 can be applied.

For the case that a group of conditional
constraints consists of two or more conditional
constraints, consider the following constraints:

Cl: {10=x}=(y=x+10).

C2: (5=x10)=>(y=2x).

The group of conditional constraints, C1l and
C2 under an interpretation where x=[0, @],
has an tnsufficient antecedent space. If another
constraint C3: x=[7,15] is added to the above
constraints, then under the extended interpreta-

tion x can be set to [7,15]. Under this

Interval S ©] &8 Conditional Constraints2} Propagetion ¥ & 14

M

extended interpretation, the group of condition-
al constraints, C1 and C2, has a suffictent
antecedent space,

In this paper, the algorithm shown in Figure
2 is proposed for the extension of an
interpretation using a group of conditional
constraints having a sufficient antecedent
space. It is based on the premise that the
extension of an interpretation is performed
using the group of conditional constraints as
a whole.

Afrer the current interpretation is extended
using a group of conditional constraints,
normal propagation is continued, if necessary.
To illustrate the effect of applying the above
algorithm on the final result, consider the same

constraints as in the previous section:

Cl: %=[0,7]

C2: y=[10,20]
C3: z=[05]
C4: v={36]

C5: X=2=7=V,

Ch: 202 and x=Hh=z=28v

C7: y=S15=w=y.

8:)15 and y<20=3w =28y S15.
C9: y20=2w=30yS35.

Under the interpretation where

x=[0,5],
y=[10,25],
z=[05],
v=1[36]

a group of conditional constraints, C5 and

C6 has a suffictent antecedent space. Therefore

the above algorithm can be applied to the
group of conditional constraints. By applying
the above algotithm to C5 and C6, the
interpretation 1 will be extended, and under the

extended interpretation, |,

x=[02],
y=[10,25],
z2=[35],
v=[35],

Under the interpreration], a group of
conditional constraints, C7, C8, and €8, has a
sufficient antecedent space. Thus, the above
algorithm can be applied to C7, €8, and C3,

and the final result is as follows:

+=[02],
y={10,25],
z=[35],
v=[35],
w=[1040].

For the # interval variables in which each
interval is divided into m sub-intervals, each
constraint will be used only one times if the
interpretation is extended no more, The merit
of applying this method to conditional con-
straints is that the number of propagation is
significantly reduced compating to the previous
two methods, ie., generate-and-test method,
and backiracking method. The another merit
is that there is no need to partition the variable
intervals, However, if this method is applied,
the result is the filled union of each sub-
intervals resulting from applying one of the
previous two methods, The filled union of two

intervals tesulis in an interval where the lower

142 174

For a group of conditional constraings with sufficient antecedent space:
1. For each conditional constraint, find the satisfiability value of its antecedent.
1.1 For a conditional constraint with an unsatisfiable antecedent, record the conditional constraint as
being vafid and do not consider it any more,
1.2 For a conditional constraint with a valid antecedent, find the satisfiability value of the consequent,
12,1 If the consequent is valid, record each resulting local variable value and record the conditional
constraint as being vald.
1.2.2 If the consequent is #nsadisfinble, report that a constraint violation is derected.
1.2.3 Tf the consequent is safisfiable, extend the current interpretation using the consequent and find
the satisfiability value of the consequent under the extended interpretation,
1231 If the consequent becomes valid, record each resulting local variable value and record
the conditional constraint as being valid,
1.2.3.2 If the consequent is saiisfiable, record each resulting local varable value and record
the conditional constraint as being saftsfiable.
1233 If the consequent becomes unsaitsfiable, record the conditional constraint as being
valid.
1.3 For 2 condittonal constraint with a éa!isﬁable antecedent, find the satisfiability of its
consequent
1.3.1 If the consequent is valid, extend the current interpretation using the antecedent and
find the satisfiability of the antecedent under the extended interpretation,

1.3.1.1 Tf the antecedent becomes wvalid, record each resulting local variable value

and record the conditional constraint as being valid,

1.3.1.2 If the antecedent is saiisfiable, record each resulting local variable value and

record the conditional constraint as being safisfiable.

1.3.1.3 If the antecedent becomes ##nsaiisfiable, record the conditional constraint as

being valid,

13.2 If the consequent is unsaiisfiable, record the conditional constraint as being
valid,

1.3.3 If the consequent is safisfiable, extend the current interpretation using the
antecedent and consequent and find the satistiability of the antecedent and the
satisfiability of the consequent under the extended interpretation,
1.3.3.1 If both the antecedent and the consequent become wvaltd, record each

resulting local variable value and record the conditional constraint as
being valid.

1.33.2 If none of them becomes wunsafisfiable and one of them is still
satisfiable, record each resulting local variable value and record the
conditional constraint as being safisfiable.

1333 If any of them becoms unsalisfiable, record the conditional constraint
as being valid.

2. For each variable, set the value of the global variable to the union of the local variable intervals, which
result from step 1. If any of global variable is @, then report that a violation is detected.

Figure 2. An Algorithm for Extending Interpretation using Grouped Conditionai Constraints

Inwervald ©]-2 % Conditional Constrainis®] Propagation 432§ 143

bound is the minimum of the lower bounds of
two intervals and the upper bound is the
maximum of the upper bounds of two

intervals,
5. An Example

An example, as shown Figure 3, determining
the lead access hole space in the printer circuit
board is used to illustrate the application of
the proposed algorithm shown in Figure 2.
Assume that the followings ate given!

component lead diameter (LDDIA) s
somewhere in the interval[0.03, 0.05],
lead extension(LDEXT) is somewhete in
the interval[0.02, 0.06],

maximum component length(COMPL) is

somewhere in the interval[0.5, 0.7].

If conditional constraint is not aliowed to be
ptopagated as other interval-based approached,
then the final resulting interval will be the same
as the above given intervals, However, a group
of conditional constraints, C1, C2, and C3 has
a swufficieni antecedent space because every
value in the interval [0.03, 0.05) for compo-
nent lead diameter(LDDIA) satisfies one of
three antecedents, Therefore the algorithm
shown in Figure 2 can be applied to the group
of conditional constraints, This results in
setting of minimum bend radius{MNBER) to
[0.045, 0.1]. Then, since all variables except
one variable in C4 have values, C4 can be

propagated. This results in setting of calculated

lead spacing(CALDS) to [0.66, 1.07]. Now a
group of conditional censtraints, C5 through
C9, has a sufficient antecedent space. Therefore
the algorithm shown in Figure 2 can be applied
to the gronp of conditional constraints, This
results in setting of stendard lead spacing
(STDLS) to [0.7, 1.1]. The final resulting

intervals are summarized in Table 2.
6. Conelusion

In this paper we have discussed propagation
of conditional constraints in interval-based
approaches, Literature review has shown that
there has been little research that addresses
conditional constraints in interval-based ap-
proaches. Two algorithms have been proposed:
1} a propagation algorithm for an interval-
based conditional constraint, which is similar
to one for an exact-value conditional con-
straint; 2) a propagation algorithm for inter-
val-based conditional constraints which satisfy
some conditions, The former algorithm can be
applied to any conditional constraint, However,
with the former algorithm, conditional con-
straints are usually caregorized into the case
that they cannot be propagated. Afrer investi-
gating two methods, whose concepts have been
well known, in which such conditional con-
straints can be propagated, we have proposed
a new algorithm under a certain condition so
that such conditional constraints can be propa-
gated, An example has shown that applications

of the latter algorithm results in smaller

144 e

bend radius

{LDEXT)

calculated
lead spacing

(CALDS})

1

if LDDIA < 0.028
then MNBER = LDDIA

2

minimym if 0.028 <= LDDIA <= 0.047
then MNBER = 1.5 * LDDIA

component
lead diameter

(MNBER)
C3

(LDDIA)

if LDDIA > 0.047
then MNBER = 2 * LDDIA

lead
extension

4

maximum
component length

{COMPL)

—: CALDS = COMPL + 2 * LDEXT + 2 * MNBER + LDDIA

[

5

i
i if CALDS <= 9.500
| then STDLS = 0.500

Ch

if0.500 < CALDS <= 0.700
then STDLS = 0.700

7

if 0.700 < CALDS <= 0.900
then STDLS = 0.900

standard
lead spacing

(STDLS)

8

if 0.900 <« CALDS <= 1.100
then STDLS = 1.100

Q

if 1.100 < CALDS <= 1.300
then STDLS = 1.300

Figure 3. Constraint Networks Determining Lead

Access Hole Spacing

Intervale] &%+ Conditional Constraints®] Propagation ¥2&§ 145

[R A

Table 2. Final Resulting intervals

variable input result when conditional result when grouped conditional
interval consfrains cannot be propagated constrains can be propagated

LDDIA [0.03, 0.05] [0.03, 0.05] [0.03, 0.05]

LDEXT [0.62, 0.08] [0.02, 0.086] [0.02, 0.08]

COMPL [6.5, 0.7] 0.5, 0.7] [0.5, 0.7]

MNBER unknown unknown [0.045, 0.1}

CALDS unknawn unknown [0.86. 1.07]

STDLS unknown unknown 0.7, 1.1]

resulting design space comparing to the appli-

cations of the former algorithm.
7. References

[1] Dinchas, M., Van Hentenryck, P,, Simonis,
H. Aggoun, A, Graf, T., and Berthier,
F., “The Constraint Logic Programming
Language CHIP,” Proceedings of the
International Conference on Fifth Genera-
tion Computer Systems, ICOT, 1988.

[2] Dincbas, M. Simonis, H, and Van
Hentenryck, P., “Solving a Cutting-Stock
Problem in Constraint Logic Programming
Language,” Proceedings of the Fifth Inter-
national Conference and Symposium on
Logic Programming, (ed.) R.A. Kowalski
and K.A, Bowen, 1988.

[3] Van Hentenryck, P., Constraini Satisfac-
tion in Logic Programming, The MIT
Press, Cambridge, Massachuserts, 1989.

[4] Lauriere, Jean-Louis, “A Language and a

Program for Stating and Solving Combina-

torial Problems,” Artificial Intelligence,
Vol. 10, pp.29-127, 1978,

(5] Hyvonen, E., “Constraint Reasoning Based
On Interval Arithmetic,” JCAI pp.1193-1198,
19809.

[6] Ward, A.C., and Seering, W.P., “Quantira-
tive Inference in a Mechanical Design
Compiler,” Proceedings of the 1989
ASME Design Theory and Methodology
Conference, 1989,

[7] Habib, W., and Ward, A.C., “Proving the
Label Interval Calculus for Inferences on
Catalog,” Design Theory and Methodolo-
&y-DTM go, {ed.}]. Rinderle, pp.63-68,
1990.

[8] Ward, A.C, A Theory of Quantitative
Inference Applied to a Mechanical Design
Compiler, Ph.D. Dissertation, MIT, 1990.

(9] Ward, A.C., Lozano-Perez, T., and Seer-
ing, W.P,, “Extending the constraint pro-
pagation in intervals,” Artificial Intelli-
gence in Engineering Design, Analysis
and Manufacturing, 4(1), pp47-54, 1990.

146 AL
b]

(10] Navinchandra, D., and Rindetle,].R.,

(11

[12]

“Interval Approaches for Concurrent
Evaluation of Design Constraints,” Con-
current Product and Process Design,
(ed,) NH. Chao, and S.C-Y. Lu, pp.
101-108, 1989.

Rinderle, J.R., and Krishnan, V., “Con-
straint Reasoning in Concurrent Design,”
Design Theory and Methodology-DTM
"90, {ed.}]. Rinderle, ASME, New York,
pp.53-62, 1950,

Lu, S.C-Y., and Wilhelm, R.G., “Auto-
mating Tolerance Synthesis: A Frame-
work and Tools,” Journal of Manufac-

turing Systems, 10(4), pp.279-296, 1991.

[13] Sussman, G.]., and Steele, G.L., “CON-

STRAINTS-A Language for Expressing
Almost-Hierarchical Descriptions,” Artef-
tetal Intelligence, Vol. 14, pp.1-39, 1980.

[14] Dubois, D., and Prade, H,, “Conditioning,

Non-Monowonic Logic and Standard Un-
certainty Models,” Conditional Logic in
Expert Systems, {eds.} LR. Goodman,
MM. Gupta, HT. Nguyen and G.S.
Rogers, Elsevier Science Publishers BV,

pp.115-158, 1991.

[15] Kim, K., An Interval-based Approach for

Concurrent Engineering Under Impreci-
sion, Pk.I}. Dissertation, Dept. Industrial
Engineering, North Carolina State Univer-
sity, 1993.

