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Determination of the Opfimal Target Values

for @ Canning Process with Linear Shift in the Mean

ol 7, si=A*

Min Koo Lee*, Do Sun Bai*

Abstract

The problem of selecting the optimal target values in a canning process is considered
for situations where there is a linear shift in the meon of the content of o can which
is assumed to be normally distributed with known variance. The target valves are initial
process mean, length of resefting cycle and controllable upper limit. Profit models are
constructed which involve give-oway, rework, and resetting costs. Methods of finding

the optimal target values are presented and o nemerical exomple is given.

1. Introduction

For an industrial process in which items are
produced continuously, suppose there is a
lower specification limit L for a quality
characteristic X such that items with X ¢ L
are rejected{for example, to be reprocessed or
sold at a discount)., A process parameter T =
L + A for the mean is to be selected so that

the expected net profit per item is maximized,

L @ERE|ed AT

The general problem considered is to develop
a2 procedure that takes process variability and
production costs into account for determining
the optimal value of A and hence T.

This problem has been studied under varicus
conditions. Bettes [3] treated the problem of
simultaneously selecting an optimal process
mean and a controllable upper limit U where
items with X ( L or X > U ate reprocessed
ar a fixed cost, Hunter and Kartha [11]
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considered the problem of selecting optimal
process mean with the assumption that items
with X = L are sold at the regular price and
items with X { L are sold at a reduced price,
Bisgaard et al. [4] extended the work of
Hunter and Kartha [11] to a situation where
items with X ( L are sold ar the price
proportional to the amount of ingredient used,
Carlsson [6] studied the problem of determin-
ing the optimal process mean by maximizing
the expected net profit which is a piecewise
linear function of X. Glohar [9] considered
the problem of selecting optimal process mean
in a canning process; cans filled above L are
sold at a fixed price and underweight cans are
emptied and refilled at the expense of a
reptocessing cost, Golhar and Pollock [10]
extended the work of Golhar [9] to the case
where a controllable upper limit U is also
present; underfilled (X ¢{ L) and overfilled
(X > U} cans are emptied and refilled, Carlsson
[7] studied the case of acceptance sampling
where the reject criterion was based on the
sampling mean. Riew [12] considered the
problem of selecting the optimal specification
limits by minimizing the total expected cost for
a given trget value, Boucher and Jafari [5]
studied the problem of determining the optimal
process mean 2nd rejection criterion which is
based on the number of nonconforming items
in the sample by maximizing the expected
profit when a sampling plan is used. Arcelus
and Rahim [2] Considered the problem of

determining simultanecusly the rarget values

for artribute and vatiable quality characteristics
by maximizing the expected profit per item. In
all these studies the quality characteristic X is
assumed to be normally distributed with known
variance and unknown process mean which is
treated as constant over time,

In many cases, however, the quality charac-
teristic is subiect to a systematic shift in its
mean level. Such a shift may be found in tocl
wear in machining, drawing, stamping and
moulding operations and automatic filling
machine, and it makes the process quality level
to deterioarate over time, Arcelus and Banerjee
[1] extended the work of Bisgaard et al. [4]
to the case where there is 2 linear shift in the
mezan, Drezner and Wesolowsky [8] considered
the problem of finding optimum initial process
mean and length of resetting cycle when there
is a lineat shift in the mean for the case of 2
quadratic loss function that is symmetrical
about the target value,

In this paper we extend the canning problem
of Golhar [9] and Golhar and Pollock [10]
to the case where there is a linear shift in the
mean of the content of a can. The targer values
to be optimized are : i) initial process mean
and length of resetting cycle in Golhar medel,
ii ) initial process mean and controllable upper
limit when length of resetting cycle is fixed,
and iii) initia! process mean, controllable upper
limit and length of resetting cycle in the Golhar
- Poliock model. It is assumed thar the content
of a can is normally disttibuted with linearly

increasing mean over time and known constant
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vatiance and has a lower specification limit,
Profit models are constructed which involve
give-away, rework, and resetting costs and
methods of finding optimal target values are
ptesented and a numerical example is given.

The following notation is used.

Notation
X weight of the fill of a can at time {
Ho, initial process mean
o variance of X;
g drift in the process mean per unit time,
§=0
L lower specification limit
U controllable upper limit
a selling price per can in a regular marker
¢ cost of content per unit weight
4 refilling cost per can
d resetting cost
T length of resetting cycle
#( - ), ®( - ) density and distributon func-

tion of the standard normal distribution
2. The Model

Let X¢ be a random variable representing
the weight of the fill of a can at time ¢, It is
assumed that X; is normally distributed with
mean p= tip+ gt and variance o°. Let Py be
the profit function at time t for a can filled
with content X¢. All cans are inspected and L
<X4=U the can is sold for 2 and the profit
is a—cXt. On the other hand, if XL or X,

U it is emptied, For the model simplification,

we assume that an emptied can at time t is
refilled at time t+ 7 at a cost of ¥, This refilled
can will then realize an expected profit E(P;).
Hence, for the reprocessed can the expected
net profit is E(Py) —7. The profit function at

time # per can is therefore

Pt= a—cXt, LSXtSU
E(P,) -7, otherwise, (1)

Using the relation

(X 2o

U x
S—-—-—c dx,

L/2me

- i [@(8,-8—-8) +a(a+8) -1

—ag

' gt
$(3,—6—7)

g+ D), (2)
where &,=(#—L)/o and &,=(U—L)/s, the
expected profit per can at time t can be written

as

E(P,)=a+r—cod,—cL—cgt

co[®(S,-0-gtja) — ¢(d,+atje) [—r (3)

T 8(6,6,-gt/0) + (0, + /o) -1

Note that with no drift in the process mean,

ie, §=0, formula{3) becomes

E(P,|9g=0)=a+1—cod|—cL

co[ ®(8,-0,)— ¢{& +gtjo) ]
®(8,— & —gtjo) +P(d +gtje)—T
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which is the same as the one obtained by
Golhar and Pollack[10],

Suppose that process is reset at a cost & for
every T and resetting time is negligible and
rate of production is constant, Then the

expected profit per unit time is

N d
P(dym)= | B(P)d:—S
=.ac+:af—a:crc5‘1—¢:1[,—2ﬂ
2
oo (B(8,=8— ) +B(S+7) -]
7 & P(d,—dy) + ®(d))—1
_15"1“? 1 d_iﬂ
7le, [®(6—2)+8)—1/" 70

wheren=7gfa,
3. Optimal Solutions

In this section, methods of finding the
optimzl target values will be given for three
cases; i) determination of f and T, ii)
determination of g and U with fized 7, and

H

iii} determination of g, U and 7.

Case i

Thete is only a lower specification limit, and
and initial process mean and length of resetting
cycle are to be selected, If X =1, the can is
sold for &, and if X;<{L, the can is emptied
and refilled at a cost of 7. Hence, the expected
profit per unit time P,(d5,7) is, by letting 8,=
o in(4),

Pd,7)=a+r—cad~cL——2—"2 ==

[log®(d +7) —log®(4,)]

r d’l+i:|' 1

7 S s, W{h. (5)

Equating the first detivatives of Pi(d,, %)
with respect to 6; and 7 to zero yields

M[¢(61+7))_‘1’(61)]
+[P(d,+7) #(d,)~P(dy) g(d+7)]
=7®@(d1+7)8(d}), (6)

~and

(o G20+ Bt +M

=%[log¢(d‘, +9)—log®{d) +K+M

di+7 1
. sG
where M=-— and K=d—8
co cot

It s difficult to show analytically that
equations (6) and (7) have a unique solution,
or Py{d}, 7) is a unimodal function of &, and
#. Numerical Procedute study over wide ranges
of M(0=M=<6.0) and K (0.005<K=<50),
however, indicates that it is indeed unimodal,
Hence, the optimal values &) and # can be
obtained by solving equations (6) and (7)
simultanecusly, No closed form solutions for
equations {6) and (7) can be obtained and a
numerical such as Gauss-Seidel’s iterative
method can be used to obtain d‘; and ?J‘. Values
of (d‘;, % ) for selected combinations of M and
K are shown in Table 1. The optimal process
mean ;A; and length of resetting cycle r* are
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then obtained by

to=L+d}0, (8)
T=70/- (9
Case 1i

In the above case, an overfilied can is sold
at a fixed price, In situations where the content

is expensive or the excess is too much,

however, it may be more profitable to repro-
cess the overfilled cans, Therefore, a controll-
able upper limit U is considered to teprocess
the overfilled cans weighing above this limit,
The process is reset for every T which is fixed,
The expected profit per unit time P,(d), &,)
is the same as formula {4) with % fized, and
¢; and &, to be optimally determined. Equating
the first derivatives of P,(d,, d,) with respect
to d; and J; to zero yields

Table 1. Valuss of ¢* and 7* for Selected Combinations of M and K.

K

M 0.05 0.1 0.5 1.0 2.0
2y 7 é* 7 ot T &' 7 ot 7
-1.174 '
0.1 794 | 956 -.889 1.201 -850 | 2081 | -1.323 | 2538 | -1484 | 3.189
02 | -476 | 914 -571 1,150 -664 | 1951 | 1011 | 2446 | -1.178 | 3.089
03 | -282 | .800 -376 1.118 -521 | 1903 | -818 | 2.391 -988 | 3.012
0.4 | -141 872 -234 1.007 -408 | 1870 | -676 | 2354 -848 | 2972
05 | -030 | .8s8 -123 1.080 -315 | 1844 | -563 | 2324 -736 | 2.941
06 062 | 847 -.080 1.066 -234 | 1823 -470 | 2301 -643 | 2916
0.7 M40 | 837 049 1.054 -164 | 1.805 | -389 | 2280 -563 | 2.895
0.8 208 | 829 118 1.044 -102 | 1789 | -319 | 2.263 -492 | 2877
0.9 268 | 821 179 1,085 -046 | 1776 | -257 | 2.248 -430 | 2.861
1.0 323 | 815 233 1.027 -102 | 1764 | -200 | 2234 374 | 2.847
1.2 A7 | 803 328 1.013 046 | 1748 | -102 | 2219 -275 | 2.823
1.4 49 | 794 409 1,002 051 | 1725 | -108 | 2,182 -191 | 2,803
16 566 | .786 479 992 134 [ 171 055 | 2175 -117 | 2786
1.8 8 | m 541 983 207 | 1.697 119 | 2,160 -052 | 2771
2.0 681 73 569 975 270 | 1.686 ATT | 2147 007 | 2757
2.5 796 | .760 713 959 328 | 1.662 301 | 2121 A2 | 272
3.0 791 749 808 847 449 | 1,643 401 | 2009 234 | 2707
35 890 | 74 838 936 547 | 1627 486 | 2081 321 | 2688
40 | 1037 | 74 956 927 630 | 1613 560 | 2.066 396 | 2673
50 | 1148 | 722 1,070 913 702 | 1591 624 | 2053 521 | 2647
821
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§(8,—d—n)— ¢(S+7)—M

O, — 8 —n)+2(d+7)—1
?j(d‘z_d\l)_ ¢(6l}_M_

T9(6,—0,)FB(8)—1 7

(10)

The optimal values d; and d'; can be
obtained by solving equations {10) and (11}
simultancously. As in the previous case, no
closed form solutions for equations {10) and
(11} can be obtained and &, and &, can be

and
found by a numetical search method, Values
#(d,— 6 —7) of (d‘:, 35) for selected conbinations of M and
(&= —m+2(éit7)—1 7 are shown in Table 2. The optimal process
— ¢9(d,—a,) mezn ,u; is obtained by formula (8) and the
D(d,—d,)+P(d;)—1 . -
54 B optimal controllable upper limic U* by
=M ! ! ¢( 62 Z) dz
o [B(0—2)+B(z) 1T~ U eLids 12)
Table 2. Values of ¢* and ¢*, for Selected Combinations of M and .
n
M 1.0 15 2.0 1.0 3.0
d‘1‘ 6‘2 61‘ d~'2 61‘ d‘2 d‘1‘ J‘? 61’ 6‘2
0.1 | -249 728 | -482 748 | 107 780 | -925 826 | -1.134 801
02 | -145 | 1087 | -3M 1066 | -587 | 1411 | -782 | 1.78 -984 | 1275
03 | -066 | 1278 | -286 1314 | -495 | 1371 | -691 | 1455 | -871 | 1578
0.4 001 | 1487 | -215 1508 | -418 | 1504 | -607 | 3684 | -778 | 1839
0.5 080 | 1674 | -153 1.721 -.351 1796 | -534 | 1909 -697 | 2074
0.6 M3 | 1846 | -.007 1898 | -201 | 1982 | -463 | 2108 626 | 2291
07 62 | 2008 | -046 2065 | -237 | 2156 | -410 | 2295 | -562 | 2494
08 207 2.163 007 2223 - 187 2.323 -.356 2.473 -.504 2.686
0% 249 2.310 .045 2.375 - 140 2.482 -.306 2643 -45% 2.869
1.0 289 2.453 .086 2.522 -097 2.636 -.260 2.807 -402 3.045
1.2 361 2.726 161 2.803 -018 2.930 =177 3120 - 314 3.379
1.4 A28 2.987 229 3.072 052 3.212 -103 3.420 =237 3.695
16 486 3.240 280 3.332 416 3484 -037 3708 - 169 3.996
1.8 540 3.486 345 3.585 A73 3.749 022 3.985 -.108 4.286
2.0 580 3728 396 3.833 225 4,008 076 4,255 -052 4.567
2.5 697 4316 506 4.483 338 4.637 192 4.908 066 5.239
30 786 4.880 597 5027 43 5.245 288 5.535 164 5878
35 862 5.454 674 5,605 A1 5.839 369 6.142 247 6.494
4.0 927 6.011 T4 6.174 479 6.421 440 6.734 319 7.003
5.0 1.03% 7.108 .B52 7.291 694 7.557 557 7.855 440 8.253 i
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Case iii

In this case, and initial process mean,
controllable upper limit and length of resetting
cycle are simultaneously to be selected, The
expected profit per unit time Py(dy, &, #) is
the same as formulz (4) with all of dy, &, and
7 to be optimally determined, Equating the
first detivatives of Ps(dy, d5 %) with respect
to ¢, &, and # to zero yields formulas {10)
and {11) and

g(di+n)— §(d,—d,—9)+M
®(d,—d,—n)+P(d+7)—1

~ LKA 1og®(8,— 8, 1)+ &(8+7)—1

—log[‘b(d‘z—d‘;)+‘1’(d‘1)—l]+g

(13)

M orer 1 ;
7)s, ®(&—z)+P(z)-1

As in the previous cases, no closed form
solutions for equations {10)—{11) and (13)
can be obtained and a numerical search method

Table 3, Values of 4%, ¢*% and »* for Selected Combinations of M and K.

K
M 0.05 0.1 0.5 1.0 20
o | % 7 2y d*, 7" d* &%, 7 ér | 4% 7* é* | d% 7*

01 -328¢ 734 (1.168 | -4681 | 7456 | 1.454 | -862 | .B102.353 |-1.072| .B69 |2.849 |-1.208{ .957 | 3.414
0.2 |-188]1.039]1.050 | -287 | 1.053 | 1.312 | -.650 | 1.128  2.152 | -.844|1.200 {2.682 |-1.055] 1.323 | 3.195
03 |-061|1278| 989 | - 170 | 1.293 | 1.235 | -513 | 1.377 | 2.046 | -.697 1.458 1 2.518 | -.899/ 1,602 | 3.083
04 .025|1.484 | 947 -.080 | 1.500 | 1.185 | -.408 | 1.5001.976 ; -586| 1.680 | 2.443 | -.782| 1.843 { 3.012
05 .097 | 1.668 | 917 | -.005 | 1.685 | 1.150 | -.322 | 1.782 | 1.924 [ -494|1.880 | 2.389 | - 685|2.060 | 2.964 '
0.6 160 |1.839 | 8041 061 | 1.857 | 1.122 | -248 | 1.959 | 1,884 | -.4162.064 | 2.348 | -604| 2.260 | 2.927 |
0.7 216 (1999 | 874 119 | 2.018 | 1.098 | -182 | 2125 | 1.853 | -.348| 2238 | 2.316 | ~.533|2.448 | 2.899
08 268 (2,151 859 | 173 | 2,170 | 1.080 | -.124 | 2.283 | 1.827 | -.287 | 2.403 | 2.280 | -.469| 2.627 | 2.877
0.8 S15 | 2.297 | 846 | 22112317 | 1.064 | -070 | 2.435|1.805 | -.231|2.560 | 2.268 | -412|2.798 | 2.850
1.0 35912438 | .835| .267 | 2.458 | 1.051 | -022 | 2581 | 1.788 | -.181|2.713 | 2.248 | -.360|2.963 | 2.844
1.2 439127081 817 | 3492729 | 1.029 | .066 | 2.861|1.758 | -.080|3.005 |2.219 | -.266|3.277 | 2.819
14 51012966 | .B02 | 421 | 2988 | 1.012 | 143 |3.1301.734 | -.012(3.285 | 2.196 | -.186] 3.576 | 2.799
1.6 S7313.216| 792 | 486 | 3.240 | 999 | 211 }3.380|1.716| .059(3.55512.178 | -.114| 3.862 | 2.783
1.8 6313460 783 | .545| 3485 | 988 | .273 |3.643 1702 .122{3.817|2.162 | -.050| 4,139 | 2.769
20 .584 13609 774| 598 | 3.725 ] .978 | .329 |3.801]1.688| .179[4.074|2.149 | .008}4.408 | 2.757
25 797 (4282 761 713 | 4310 | 961 | 448 |4.495|1.663 | .301(4.606}2.121| .132|5054!2.730 _.
3.0 820 | 4.850 | 750 | .808 | 4.880 | 947 | 547 (5.082 | 1.643| .401715.207 | 2009 .234|5671 2707 |
35 960 | 5408 | 742 .8B7 | 5441 936 | 630 |5.657 |1.627 | .485/5.884|2.082| .321|6.269 | 2.688
40 (1036|5960 | .734| 956 | 5995 928 | 702 |6.223 | 1614 | .559|6.459|2.067 | .396|6.854 | 2.673
45 |1.096|6.506| 728 1016 | 6543 | 919 765 |6.782|1.602| .624|7.025 2054 | .462|7.426| 2.650
50 [1.148|7047 | 72211070 | 7.086 | 913 | 821 |7.335|1.502| .681|7.583 | 2.041| .521|7.990 | 2.647
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can be used to obtain d';, 6; and #*. Values
of {85, &.,7") for selected combinations of M
and K are shown in Table 3, The optimal
process mean Ha, length of resetting cycle 7*
and controllable upper limit U* are then
obtained by formulas (8)-(9) and (12),
respectively,

4. Numerical Example

Let L=10 Kg and a= ¥¥17,000, r=¥700,
¢=¥¥1,400 per kg, and ¢=0.35 kg. Suppose
that @ is 0.00l¢ per unit time and 4=
¥#50,000. Then the corresponding constants
are M=14 and K=0(,].

For case i), we obtain 81=0409 and

PD

7 =1.002 from Table 1. Hence,

o =L+876=10+0409%0.35=10.143kg,
T =3 6/g=1.002/0.001 =1,002 unit times.

For case ii), suppose that 7 is 2,000 unic
times, Then ¢;=0052 and ¢;=3212 from
Table 2. Hence,

#o=L—+d0=104+0.052 X0.35=10.018kg,
U =L+6;0=10+3212%0.35=11.124kg.

For case iii), d)=0.421, 6;—2.989, 7 = 1.012
from Table 3. Hence,

=L+850=10-+0.421 X0.35=10.147kg,

20

15

10
} §°
5
M
¢ +
0.0005¢ 0.001¢ 0.00150
07 14 21 M

Figure 1. Percentage Decrease of Expected Profit as a Function of Mand 4 in Case iii.
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Figure 2. Optimal Expected Profits as a Function of M {K=0.5)

U’ =L+850—10+2.989X0.35—11.046kg,
¥ =7 6/8=1.012/0.001=1,012 unit times

For case iii), Figure 1 shows how seasitive
the expected profit is to the use of incorrect
values of M and §==0/7 in the above example
in terms of the percentage decrease (PD)
which is defined as

Ps(a; d; ?‘)_Ps(d"l &%, 7)
= . : . = O L L Xl y .
Pi(dy, &5, 7) 00( )

PD
where

Py(d], 65, 7) = the optimal expected profit
using correct values of M and g; in this

example M = 14 and 4 = 0.0010.
Py(d", d%, 77) = the optima! expected profit
using incorrect values of M and @

Figure 1 indicates that the expected profit is
more sensitive to # than M, Similar results can
also be obtained for cases i) and ii).

For the three cases, Figures 2 and 3 give
the expected profits as a function of M and
K. They show that the optimal expected profit
of case iii) is somewhat larger than those of
cases i) and ii}, and the optimal expected
profits tend to decrease as M and K increase.
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Optimal Expected Profics {in units of co)

~B8-Py(o, 7)
_'_Pz("l. &)

——Pya, &, %)

0.8 1

02 04 06

Figure 3, Optimal Expected Profits as a Function of K (M=1.0)

5. Concluding Remarks

The paper considers the problem of selecting
the optimal target values for a canning process
in which there is a linear shift in the mean
value of content of a can, Profit models are
constructed and methods of finding the optimal
target values are presented. Empirical results
indicate that the case with upper limit is
somewhat more profitable than the case with
no upper limit and that the expected profit
tends to decrease as M increases and that the
expected profit is more sensitive to @ than M.
In chis study, the wvariance of the quality
characteristic is assumed to be known and

fixed, It will be of interest to consider the case
in which there are shifts in both mean and

variance of the quality characteristic.
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