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RELATIONSHIP BETWEEN QUEUE LENGTHS AND WAITING TIMES
FOR QUEUEING NETWORK MODELS

4=

Sung Jo Hong*

For general open queueing network models, the relationship between weak limits of
queve lengths and waiting times at stotions is investigoted under heavy traffic situations.
It is shown thet under suitable normalization, weak convergence of queve lengths and
arrival processes is a sufficient condition for that of waiting times, and is also necessary
condition when the network is of feedforward type., Moreover, these weak limits for
queve lengths and waiting fimes are shown to be simply reloted.

Abstract i

1. introduction

In this paper we investigate, in a setting
general as much as possible, the relationship
between weak limits of the queue length and
waiting time of queueing systems under heavy
traffic situations. To explain more precisely
what we do in this paper, let us consider the
queueing model GI/G{ljoo(i.e intetarrival and
service tmes are independent sequences of ii.

d. random variables). We think of a sequence

of such models, and let @,(f) be the queue
length at time { and W, (%) be the waiting
time of kth customer for the uth queue model.
It is well known that under a heavy traific
condjtim nommalized processes ¢ (¢) = (1} ‘/ n)Q, {at)
and Hr lf\/n

reflectmg Brownian motions {{) and W(¢)

([ni}) converge in law 1o

respectively as #—>00[8]. There are various
ways for obtaining this result, and if we look
at closely these proofs, we see that the existence

of weak limit of {{, #=1} is necessary and

* Institute of Information Sciences and Electronics University of Tsukuba, fapan



140 T4 2

sufficient for that of {Wn;n_él} , and the weak
limits 0 of {On;nzl} and W of {I‘f’";ﬂzl} are
simply related, ie the law of Q( - ) is equi-
valent to that of AW(A - } for suitable positive
constant A, However as long as this last result
ts concerned, we can prove it under much more
general conditions, In fact, the following fact
will be shown: We assume only that {1} Q,(¢)
is expressed by 0,(f) =A,(1)—D, (i) whete
A,(¢£) and D, (t) are counting processes which
count arrival and departure customers {for
simplicity ,(0)=0 is assumed), (2) the
waiting time W, (k) for the % th customer is
defived as W, (k) =D '(k)—A (k) where 4]'( +)
and D '( - ) are inverse processes of 4,(¢) and D, (1)
respectively, Then for a suitably normalized process
A,(1) of 4,(£}, the joint convergence {Gnﬁn,'ﬂzl} is
necessary and sufficient for that of {W“.Ahu;ﬂzl}‘
Moreaver, the weak limits of {On,‘n2 1} and {W,n=1}
are simply related as was stated before,

In this paper we discass the queueing networks of
Markovian type, and obtain the similar result as above,
A major drawback of our result is, though our model
is quite general, in the definition of waiting time {see
(34) is Section 3); it lose the meaning as waiting time
for some systems such as queue models with multiple
severs at 4 station,

The central limit thearem version of Littl’s formula
{the relationstip between queue lengths and waiting
times) was discussed in [1],[2]. The other topics
related to our paper are studied in [57 and [6].

We denote by D{[0,00) %) the space of function
F[0,00)>R* which are right continuous and left limits,

and we endow this space with the Skorohod topology

and L th : i
— e COH‘CI’gCHCC 11

[3]. We also denote by f}

probability and in law, respectively,

The test of this paper is organized as follows. In
Section 2, we describe the structare of the yueueing
network which we trear in this paper, In Section 3, we
derive the relationship between weak limits of queuc
lengths and waiting times at stations, Finallvin Secoon

4, we llustrate an example,
2. Model description

The queueing network consists of X stations, and we
assume that the customer routing within the nerwork
Is Markovian, Let P be the routing matrix for the
network, That is, P,-j represents the probability that a
customer completing service at station ¢ goes immedi-
ately to station § ; 1_§,Pij is the probabilicy that a
customer teleased from station ¢ leaves the network. Let
A,{1),1=<{<K | be the number of customers who arrive
at the ith station by time ¢ from the outside of the
network , and D{t),1<i<K, be the number of
customers released from station ¢ by time f. Suppose |
that R.(m)# =12+, is a random vector which route
the #ith customer completing service at the dth starion,
More precisely , R,(m)=¢; (¢ is the jth unit vector]
if and ony if the mth customer to be served at the ¢
th sation 5 routed immediately, upon completing
service at station 4, to station j, and P(R,(m)=¢;} =P,
Let Q1) ={Q:(t),7+,0x{t)) be the vector whose ith
component ;) is the number of customers ar the fth
station at time #, We also let D{¢) = (Dy(2), D, (£)).
Our basic agsumption is that Q(!) s represented by:

K D."{'f}

QU =Qt0)+ A+ X X R m)=-Dl).  (2.1)

i=lm=1
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Note that X R{m) is a vector in which
w=1
the kth component equals the number of

customer routed from station ¢ to K over [(,t].
3. Basic results

We consider now a sequence of queueing
networks of the type described in Section 2,
indexed by n=1. Let (2 F P} be the
probability space on which processes of the #
th such network are defined, All the notations
established in Section 2 are carried forward,
except that we append an # in a convenient
place to denote a quantity which depends on
#. We assume that K and the routing
matrix are independent of #. Thus queue length
vector @, (#)
for the nth network is represented by

K D)

Q,,(f)=Q,,(UHAH(!)+§J§1Rl-(m}—D,[(f), (31}
and to simplify our discussion, we assume
0.{0) =0 for =1 We make the following
assumptions.

Assumption 1. (J—P) 7" exists where [ is
KX K identity matrix,

Assumption 2. There exists a sequence of
nonnegative constant vectord, #<=1such that
A,—>A and

o
b= -1-,- (4, (nf) —l”nf}_,—E— 2 AR{m)=P )= ],"-,K)
¥ H ¥ fm=1

{32)

converges weakly, as #—>00, to a continuous
process T(1) = (A R{2)i=17 K in D{[0c0) B
where P, is the ith row vector of P, Moreover,
if we let a;= (l(I—P)_!)f-, the 7th element of
A(I-P) 7 1<i<K, then a)0]1=/<K,

Assumption 3. Let

(1 1 ; _

4,(t)= (7:1 Q"(m)’_:.,/n (4, ()~ A ut),

L %(R;(m}—P,-) il K2l (3.3)
-/.*I m=:

Then A4,(1) converges weakly, as #—>00, to
a continuous process A(r)=({)(z)ﬁ(:),}é,(f),
i=1--K) in D([0,00),R") wherew =2K+ K%

Let W, (%) be the waiting time at station ¢
of a customer whose arrival order ar staton ¢
is kth. More precisely, it will be defined as
follows, For an arbitrary cadlag process X(f)
which is unbounded above and X(0)=20, we
define the inverse process X7HE) by XTHe) =
inf {s:X{s))}. Then W'(k) is defined by

W(k) = (D))" (k) —(al) " (&) (34)

wherc the process a;(i) is the 7th element of

the vector process

At

a,(t)=A,()+ 2 X Rim), (35)

i=luz=1

Let us define processes W, (¢),71=1 by

{6 = _}'_ e l‘, R 26
W {1 = (Jn Wi [xt]), T HN([m‘_-)). (3.6)

Then our interest is to express the weak limit
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of W(#)(if exists) by the processes Q(t},‘zl(t)
and B{t)1=:<K, which appear in Assump-
tion 2 as limit processes, The result is

contained in the following Theorem.

Theorem 1, Assume assumptions 1, 2 and
3. Then
(A,,(f).W,,(t))i(A(f),W(t)) (3.7}

in D([O,OO),RKJrr). where weak limit W(f) is

expressed as

w-fal)-tlg) e

Here a,i=1,- K were defined in Assump-
tion 2.
Proof. For the proof of Theorem 1 we

need several lemmas,

Llemma 1, Let XY, 221 are real valued

cadlag processes which are unbounded above
and X, (0)=0 and Y,{0)=0. Suppose, for an
arbitrary R —valued cadlag processes Z,(¢),n21,
that

(20X (i (z 0,¥() (39)

in D([U,OO),R‘!H) where

X,() == (X, (nt)—a,nt) (3.10)
Jn

Y, (¢) ~ L Y, (nt)—b,nt) (3.11)
I

and XY are continuocus processes, Then if

a,—~a=0) and b,—>b=(,

(Z0.X5,0.5,0X07mE

(zu>j«z),i-’(z1,~§k (ﬁ) s (;) ) (312)
in D([O,OO),RJH) where
X,(1) = (X-'(m)ulm) (313)
" /?‘!- n a, -
—1 1
Y, L(8) == \f (l‘ (nt) b—”ﬂt) {314}
Proof. We can write X,({) and Y, (¢} as
(N ea JSa | _
X(t)=a,/n (ﬂaan(nt) t) (3.15)
Y, {2)=b, Jn( Y(m)—z) (3.16)
Since inverse processes of {lfna, )X, (n!)
and (1/ud, )Y, (nt) are (1in)X (a #t) and
(l,n’n)}’;l(b”ﬂf) respectively, by Whltt[gl
(Z0,X,(0).Y,(0), U,,(i),lvu(f))
(Z() X(6),¥(1),—X(2),— Y (1)) (3.17)
in D([0,00)R*"") where
=a,/n (—X Ya, nt)-—t) (3.18)
(8 =b, Jn (— b,in!)—t) (3.19)
Then the conciusion follows if we note that
0=, U, (Lja, 1) and Y,(8)=(1ib,q ({118, )1)

and apply a composition theorem in Whitt 9]

O
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Lemma 2. Let #,{¢)={1/n)D, (n) and
B(0) = MI—P) ™. Then sup,e 7| #,(0— ()| 0
as #—>00, where T is an arbitrary interval of
[(,00).

Proof. Since #,(f) and #$(¢) are both
increasing in { and %(f) is continuous and
deterministic, it suffices to show that ¢"(r)i¢(t)

as n—»00 for each f=0. Let

) 1 B at)
Gl = pi iy 2, R, 1<K
?3 B
{3.20)

Then from (3.1},

Loy -Laom—p00-c,0)  21)

where G,(#) = (GL(f),‘“,Gf(l))_ To show our
conclusion, we may and do assume that A ,,(t)
converge to A(¢) uniformly on any compact
t-interval with probability one (Skorohod
theorem ), Then we will show that Di(ﬂi)—)m
with probability one for ) and for all
{{1s4= K}, First suppose that for an 7, 4,30,
(Note that since 2,30 for all {(1=i=K) by

Assumption 2, there exists such A)(0. Since
1 1
Ebn(f)zgfln(ﬂf)—;@,,(nf) (3.22)

{for vectors & and ba=h implies a,2b; for
each (¢)and (1jn)4 (nt}=>Af and (1/n)Q,(nt}>0
with probability one, hmmf"_,oo!,b f)2M with
probability one. Hence liminf . #.(1)21)0,
and this implies that with probability one,

D',(nt)—00 as n—>00 for t)(} when A;)0. Next

let {{1={<K) be arbitrary, It is easy show
that in the view of Assumption 1 and 2 that
a0 for all {(1=<{<K), there exist an m2]
and 008, such that A )OP )OP 30,

PJ-”_:[)O. Since li-u)O, from the abou: result we
have liminf, oo(1/n) D) (nt} 22X, 0)0 with pro-
bability one for £)0. Then, for 0,

.y DE](JII} e i

200y T T oo "

liminf A
H_)mm mz::] (R (m)), 2, P, 00  (3.23)

Hence, noting from (3.1) thar

( .
L=l S w Yoo, @20

B

tfzmmf 3
we have that ol YO M) 24, Pr )0
with probabllm one for )0, Pmceedmg
similarly as avove, we have that hmmju i)D"

i

(af)2A P. P, )0 with probability one for £}, and

J fi !I

finally we see that J:T:nf {1 n}D‘{u!)zl PPt
for £)0. Thus D! {nt)—>c0 with probablhrj.' one
for £30 and for all #{1={=K). Then this
implies that G, (f)—=P as n—>o0 for £)0 with
probability one, and by (322), ¥, (£)>A(I—P)"
t(=4(t)) with probability one as #—>c0 fot

£3(, Thus our conclusion follows, ]
Lemma 3. Let

D,(t)=(D,(t)~

4 #

A(I-P) =], (3.25)
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(4(),D()) (3.26)

in D{[0,00) RF**), where D(t) is defined
by

f

K
bit)= AN+ ZR(,0)

1 i*]

=0} ((F-PY {(3.27)

Proof, From (3.1),

EDdn

O+ E X (R )=Q,{nt). (3.28)

I=lm=1

DuNI-P) =

Hence D _{t) can be written as

Dl{i) (1 (4, (nt} =& nt}+ 1 %
\-'"R 1.1"'?31"1
KLAUN 1 .
mz_l (R,-{m}—P,-}—-‘/';Qu(ni} {I-P) {3.29)

where gb;(t) is the sth element of %, (¢).
Then we have our conclusion by Lemma 2 and
the following general fact: Suppose (X,(¢), Y, (1},
2,0) Lx(,¥(,20) in D({0,00),RY), where
Z, is non-decreasing and Y is continuous.

14

Then

(X,(0,Y,(0.2,0 X0+ ¥,(Z,(0)

(XY (0,2 X +Y(Z(0)) (3.30)

in D{[0,00),R"). U
We now proxe the Theorem 1 We note that

W (k) = (D)) (R = (Di+ ) k) 1<K,

(3.3D)

where (D;-FQL)LI(i)
D)+, (t). By Lemma 3,

is the inverse process of

b= (r)l

: \/}{  {at) =M (1-P)"'uf),

(D, (nt)+0 {nt) =4 (I—P) 'nt})
{4(: YQUH=H), (3.32)

in D{[0,00) K%+

(bn(!),—ls- ((Djr )—J(Jm)—ljm) ,
Vi

i

‘) as n—>00, Thus by Lemma 1

#‘ ({U;“I'Qi)_](nf)—%—n{) 1K)
¥ 2

A

e

(3.33)

in D([O,OO),RJKH) where a; is the fiih

element of ln(I—P}_l.Now, since

e (0 71= () =D+ )7 () ISi<E,
(3.34)
we reach the conclusion. U

Remark 1. W' (k) defined by (3.4) has the
meaning as waiting time (or sojourn time)
only when a customer who comes first
completes the service first, This is the case
when the service descipline is first come, first
served base and there exists a single server at
sation z, If there are multiple servers at station
{ and service times are random, W:;(k) loses
the meaning as waiting times as was remarked

in introduction,

Our next concern is to investigate wherther
the converse of Theorem 1 holds or not, Thus

we set the Assumption 4,
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Assumption 4. Let
l_( 1 (nt)—ht),
11
'2 (R!-(m}—Pr-),z' =] K n21 (3.35)

Then B,({) converges weakly, as #—>c0, to
a continuous process:
B(#) = (W(), A} R(),i = 1,--- K)nD([0,00)
{R").Under this condition, we have the follow-

ing theorem

Theorem 2. Assume Assumption 1, 2 and
4. We further suppose that Pj;=0 if 127, Then

(B, (0,0, 5 (B1,0M) (3.36)
(1 J;QL(H-{),"-,I;' Jﬂ@f

in D{[0,00) R, where ({1} =
(n)land O(t) is given by

D) = (0.(t), - 0x(B)), (3.37)
O,(t) =a;W(at) 1<i<K, (3.38)

Proof, We prove Theorem 2 inductively.
Let D{z'1 ﬁiﬁK,Pt-j = for j=1,---,}. Then we
may assume that each station of the network
is numbeted so that there exists 7, sausfying
D{,2, - i)

Step 1 (1) We prove that the following
{a) and (b} hold:

{a) for each {20}, Di(nf);':: at1<i<y

—¥

(b) (B,(0),D,(01<i<in® |
(B(1),D,(t ),1sssao)nm[o.oo),fe’““‘1

where I)i,(t) was defined in Lemma 3

and

Dty = =AW (A8 +A () 1 <i<y,

{(a) : This is trivial if we note that (i)
Q,,(a‘) AL ()~ 15-3530

(ii) A (ﬁt ﬂQ (nt);’ﬂ) {A4,0) for each
1=(), and (m)a,i the ¢th element of lN(I—P)*-‘,

satisfies.
ay, = A, (3.39)
a = l’ + EP & I<i<K, {3.40)

Jitar

(b} : we have
W(8) = (D)7 () —(4,) T (R)I<i<sy  (3.41)

Moreover, by Assumption 4 and Lemma 1,

(B (A= 1) &

—>

(B ALO1=1,+4) in

where

D([0,00) R

AL(8) -% ((A’)'l(m %ni) (342}
Alt) = =34, (li) Iy (343)

Hence, if we set

D‘UF% ((Di}_](in(]}—}!—-ni) . 1<y (344)
Y i A

Ly
L)

(BB = 1) S BT 0+ T 7= 11

in D0 RY ), Then by noting | B(1)— (D)1 |
€] and by Lemma 1, (B"(f}.DL{f).l=1.'“,1'r]i
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(Bl DAt)1 =
—AIT (-

Lo is) in D{;U‘,OO}.RI“T:') where DI,-{{) =
AA(AN << Bur, —A A1) = 410,
and {b) is completed

(2) We show that (B(10/(11=1-i) L (Bl1),
001=1i) in DU0e0) KT, Since , by (3.39),

L

(1) =S4 (nt)— At} = 2 D1 () — ),
Jn Vi
1<) (3.45)
from {I) we have (B ,J{}Q-l.( )1‘1 ')L{ B(n),

AO=DD1=1i i D([0.00) R*™). Bt A(0-Di#)
—.-ll-(!)—(—li-HJ-(lg}—l‘-Ar-(l_,-f)) —lrli:-(l_,-(), Hence we
have the conclusion,

Step 2
two statements (a) and (b} hold for k=1{—1,
then they hold for k=1

{1) We prove that if the following

(a) for each tEOD’(m‘)M at, 1= =p,
(b) (B0, (0 1<t SBELDO,1<<k)
in D( [0,20) 51, where Ij_,-(f] satisfies
D{t) = —aWag) +2,(1) (3.46)
ZIN=140+ TRGap), + 22,000 (347)

{(a) I By our inductive assumption,

i lD‘{n!}
Lt 43 T (Rn)) (=L 00,
=1
At TaPf=af, (3.48)
=1

where the last equality is obtained from

(me ) = MI~P)™ and the assumption P.=0{i2j).

Hence (1n)(a),}™{at)", (1o}, Then,
(Lnivi (o ])P. @y e o)
which in turn implies (l.n}Dj[{u!)i af.

(b): Let

P
—

_ _ j—1 Dt
z;u%%{.ﬂ{nm T 3 R~
=l m=1
1<i<K (3.49)
! 5
_7 ’ ;31) a, nf) (3.50}

Then, br (3.40)

1 =l D’ ntt

2= (- + T T (Rim),

i \-’nl 1 m=l

=1
+—1.- ZPII{Df:]{m}—niu!).
Ris

(3.51)

Thus, by Assumption 2 and by our inducrive

assumptions (a) and (b),

(B {}Z{i)lsrﬁr) (BIOZINI<)<) (352)
in D([0,00) R'*") where

Z(n=d +2R (ag) ERr {15, (3.53)

Then by Lemma I,

BADZ(1) « l!!)"—l"ﬂf d=;=q
JI aﬂ

L 1
5 (B(t)fj() - (ﬂ}) 15151) (3.54)

}

Therefore by (3.4)
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{3.55)

in D{:U,OO}.RH?). Then again by Lemma 1,

Dy — tr;_,n!),lsjﬁf) L

i 1
B”{,Z" )
( DA
(BU)Z,(0),D,1<<i) (3.56)

in D([0,00),R™), where D,(1) = —aW{at) +Z,(1),
This complete (b},

(2} We show that if (B,[f )é‘{ }IS}'S{—I}L
(BOJ(I<i=1), then (B0 5

{B{!},O_r-{f},lﬁ)ﬁ:'), where Q‘_I;{}=ri_i-11_l,-(a_j-f)_ Indeed,

note that
RORTAD —T}; (D (nt)—aint). (357)
Thus by (357)
B0 01k B z0-b01<<0) (358)
= (B(1),a;W{ap) 1<) (359)
in D([0,00) R, O
Combining these theorems, we have the
following corollary.

Corollary  We assume (1) and (2), and that
P;=0if 127, Then if any one of the following

two statments (i) and (i) hold:

@ (/g un)F 0

weakly, as #—>0C0 to 2 continuous process
(Q(),1(0) in D([0,00),R"),

(it} ((1f yn)W,(nt),V, (1)) converges weak-

Iy,

(W), V(1)) in D([0,00),K),

then the other one do too and, in addition,

) converges

as #—>CQ 1o A corttinuous Process

there is- the joint convergence

(—LQII,(M),—%-H Arut]),] “!}) (DL

N VR

(3.60)
in D([0,00),R ™), in which case

PN P 1 1 -
i) = (a—l@ (n-_]) ,"',R—KQH (E;) ) . {3.61)

Remark 2 For the normalization of

processes , (¢}, W, (¢} and others we have used
,/; (eg.(1} ,/n Llnt)).

no neccssny of llSlﬂg 1/1!. ;\1’1}' sCquence

However, there is

{e,n=1} such that ¢ =00 and nfc, =% as

#—>00 is sufficient instead of \/n_ We use o n
- - - i .

only because in most applications /51 is used

when limit processes are continuous,
4, Application

We consider the case of Markovian tandem
queues where the service rate at each station
depends on the queue length of the station.

Thus Q,(#) in (3.1) is modeled as follows:

Q) =4 (5) =D, (¢) (4.1
O\ =DM =D, 2<i<K = (42)
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{that is,

£0)=0, 2<i<K and P.=1if j=i+]
and P[-j-=0 if j¥1+1). For that each #2], :I’,;({),

Di{t), 2<i<K are counting processes defined on
2 stochastic basis (@ F P satisfving usual
conditions} 3, p2]. They are assumed to have
no common discontinuities with probability

one, and to have compensators given by
A L) =R {4.3)
DMQ=LM@H$M&1£%K {(4.4)

where & { - },|</<K, are nonnegative measurable
funcrions with A, {0} =0. We make the follow-
ing assumptions:

Assumption T. lim Afx)= 11{06)(00 for each,
and Yli)rrgcl:;{x) = A {00 fc;t:“;' =01,.K

where ¥ (x)=X. Morcover, M(x)<A™ for all
x=().

Assumption [1. fimx(A{c0)— L (x}) =a(20),

e
-

;=1 K and supﬁ‘z,r{l;(m)—lil{_r)) <M. Moreover,
sup, M (oo)oo, for =01 K
Assumption T y/n(k(e0) =k {o0))=>C{{c0),

1<:<K, and 11{00) >3~ (w). Hence ¢20,1<iSK

Note that by Assumptdon [lI, A, =2, for
=1 K. Under Assumptions I, [ and [II

the following fact was proved in [7]: We have

o= 0w

Wt = l‘f,(nt))) {(4.5)

E,(@(z),&(z))i-nm[o,oomf) (456)
where A, = ‘/1080(#) with By(#) being a

standard Brownian motion and (1) = {{(t}(if)1

15 a unique solugion of the following Skorohad

equation :
0.1 = —et+ VAB_ (0~ JRB) ~¥,_, (1,
1<K, Yl =0 (4.7}

where O(f),lﬁz'f-K are nonnegative continu-
ous processes,{ B{f),*++ By (t}} is 2 K dimen-
sional standard Brownian motion

independent of By(t} and Y.(#),1S/<K arc
nonnegative,nondecreasing processes satisfying

Y.{0) =0 and
[
E oQi(S)dY;-(S) = a’r-f,lgi‘:gK. (48}

Note that if a;=0i=1---K, (48) is

1ty

equivalent to

!

) =0 (s) = VDIISK. (49)

((t) is an extension of real valued Bessel
Processes to a multidimensional case, Let

W,l1) be as Theorem 1(i.e,W,(th={{l} y-"';)lif[{:n{i 5,
1€i€K) Then in view of Theorem 1, we have

(ﬁ_mﬂM—ﬁmMﬂM)i&Mﬁwn (4.10)
#

in D([U o0 ), R'*Y) where W(1) is given by
= (1,0 lu})."'.(1."10_505{{!,."lu}n'gkt))

Moreover, by Theorem 2, (4.5) is nccessary
and sufficient for (4.10) to hold, W(¢) satisfies

the following Skorohod equation analogous to
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(4.7}

N PR Gl —Lp (|t
(8= =yt + JADB"‘I (}7«1}) ﬁB‘ (Aﬂ) +

Y1) =Y, _ (1), 1=i<K {4.11}

where Y,(£),1S{SK satisfy Y(0)=0 and

LS - 1
[ Wis)avi(s) =gy (4.12)
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5. Conclusions

We investigated, in a setting general as much
as possible, the relationship berween weak
limits of the queue length and waiting time at
stations of queueing systems under heavy
traffic situations. [t was shown that under
suitable normalizaion, weak convergence of
queue lengths and arrival processes is a
sufficient condition for that of waiting times,
and is also necessary condition when the
nerwork is of feedforward type. Moreover,
these weak limits for queue lengths and waiting

times were shown to be simply related,
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