CYTOTOXICITY OF RETROGRADE FILLING MATERIALS TESTED BY 51Cr RELEASE, MIT AND LD ACTIVITY

51Cr방출과 MTT 및 LD활성도를 이용한 역충전재의 세포독성에 관한 연구

  • Choi, La-Young (Department of Conservative Dentistry, College of Dentistry, Wonkwang University) ;
  • Im, Mi-Kyung (Department of Conservative Dentistry, College of Dentistry, Wonkwang University)
  • 최라영 (원광대학교 치과대학 치과보존학교실) ;
  • 임미경 (원광대학교 치과대학 치과보존학교실)
  • Published : 1994.09.10

Abstract

Endodontic surgery is performed when conventional endodontic therapy fails or is contraindicated. In such cases, retrograde filling materials including amalgam, composite resin, and various cements have been used. Biocompatibilty and margin sealing ability of retrograde filling materials are important for the long term success of endodontic surgery. In vitro cell culture is frequently used as the method of measuring the biocompatibilty of dental materials. The purpose of this study was to evaluate the cytotoxicity of six kinds of retrograde filling materials including newly developed light curing glass ionomer cements. Each material was mixed according to. the manufacture's instruction and evaluated as : freshly mixed, 24-hour after mixing, and 168-hour after mixing respectively. The elution solution was extracted after 24-hour contact with materials using media. Cytotoxicity was evaluated by direct contact, or elution contact. Test results of radiochromium($^{51}Cr$) release, cell viability using tetrazolium dye (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl dimethyltetrazolium bromide(MTT) test and lactate dehydrogenase(LD) of damaged L929 cells were analyzed. In the $^{51}Cr$ release of direct contact, all experimental retrograde filling materials except amalgam and glass ionomer cement showed increased cytotoxicity compared to control. In the $^{51}Cr$ release of elution solution, the released $^{51}Cr$ was so minimal that it was impossible. to evlauate the cytotoxicity exactly. The elution solutions of glass ionomer cement and IRM showed marked cytotoxicity in MTT test. LD enzyme activity was highest in tests of direct contact with composite, light curing composite, and light curing glass ionomer cement and IRM. Amalgam revealed least cytotoxicity while IRM showed cytotoxicity using all three methods. Composite, light curing composite and light curing glass iomomer cement were cytotoxic in the tests of $^{51}Cr$ release and LD activity. Glass ionomer cement showed cytotoxic effect only in the MTT method. From these results it is suggested that the standardization and optimization of cytotoxicity testing, especially using elution solutions, should be strongly advised.

Keywords