GROWTH PERFORMANCE AND AMINO ACID DIGESTIBILITIES AFFECTED BY VARIOUS PLANT PROTEIN SOURCES IN GROWING-FINISHING PIGS

H. K. Moon, J. W. Kim³, K. N. Heo, Y. H. Kim, S. W. Kim, C. H. Kwon³, I. S. Shin and In K. Han³

Department of Animal Science and Technology, College of Agriculture and Life Sciences, Seoul National University, Suweon 441-744, Korea

Summary

This experiment was carried out to compare the effects of six different plant protein sources such as soybean meal. extruded full-fat soybean, canola meal, raposeed meal, costonseed meal and perilla meal as a sole protein source of ciets on growth performance and amino acid bioavailabilities in growing-finishing pigs A total of 54 pigs with average 25 kg of hody weight were used as experimental subjects for a 65-d feeding trial. Digestion trial was carried out with seven ileal canculated pigs. The most rapid rate of weight gain was observed in pigs led soybean meal and full-fat soyhean, the moderate one in pigs fed canola meal and cottonseed meal and the least one in pigs fed rapeseed meal and perilla meal (p < 0.05). Feed efficiency was better for groups fed soyhean meal and full-fat soyhean than other protein meals (p < 0.05). The apparent ideal digestibilities of essential amino acids of soybean meal and full-fat soy bean (82.5% and 81.6%) were significantly (p < 0.05) higher than those of other protein sources (61.2 to 69.4%). Regardless of protein sources, the apparent ileal digestibility of arginine was highest, whereas that of histidine was lowest among essential amino acids. Proline had the lowest digest hility among non-essential amino acids. True amino acid digestibilities tended to be higher than apparent amine acid digestibilities. The differences between true and apparent leal digestibilities were greater in canola meal, rapeseed meal or cottonseed meal than other protein sources. The differences was greatest in proline except for cottonseed meal. The feeal digestibility appeared to be higher than the ileal digestibility. The differences between fecal and ileal digestibilities were greater in canola meal, tapeseed meal, cottonseed meal and perilla meal than in soybean meal and full-fat soybean. In general, profine was the most disappeared amine acid in the hind gut, while the net synthesis of lysine in the large intestine was observed in all protein sources except perilla meal. It is appropriate that swine feeds should be formulated based on true ileal amino acid digest;bility of protein sources for pig's normal growth.

(Key Words : Plant Protein Sources, Pigs, Amino Acid Digestibility, Cannulation)

Introduction

It is necessary to provide arimals with adequate amount of protein for their normal growth and muscle deposition. Nutritional and physiological functions of dictary protein depend on the quantity and quality of amino acids which can be digested and absorbed in the digestive tract of animals. Protein quality of individual feedstuff was determined by its amino acid composition, content, balance or digestibility because total amount of amino acids in feeds was not available to the

Received April 1, 1994

Accepted July 10, 1994

animals (Engster, 1985).

Enzymatic method (Denton and Elvehjem, 1953), chemical method (Sanget, 1945), microbiological method (Ford, 1960), plasma amino acid (Denton and Elvehjem, 1954), growth assay (Gupta and Elvehjem, 1957), fecal analysis method (Kuiken and Lyman, 1948) and ileal analysis method (Zebrowska, 1973) have been introduced to measure amino acid digestibility. The widely used method among them is ileal analysis method to measure the amino acid patterns that had disappeared in the small intestine of the animals fitted with ileal cannulaes, with consideration of microbial activities in large intestine (Low, 1979; Tanksley et al., 1986).

In many circumstances the cost of pig diets can be reduced if soybean meal is substituted with alternative protein sources. However, the ability of these protein sources to supply nutrients for normal growth needs to be fully evaluated before they can be efficiently incorporated in diet for

¹D-vision of Animal Nutrition and Products, Livestock Experiment Station, Rural Development Administration, Suwcon 441-350. Korea

^aDepartment of Dairy Science, Yeunam Junior College of Livestock and Horticulture, Chunar 333-800, Korea

⁷Address reprint requests to Dr. In K. Han, Department of Animal Science and Technology, College of Agriculture and Life Sciences, Seoul National University, Suweon 441-744, Korea

	Soybca	n meal	Full-far	soybean	Canol	a mea	Kapeset	ed meat	COLLOUN	eed mear	PCINIA	110Cdl
	Grewing	Finishing	Growing	Finishing	Growing	Finishing	Growing	Finishing	Growing	Finishing	Growing	Finishing
Ingredients (%):												
Corn	76.10	8.44	72.96	79.54	60.13	76.07	65.00	73.00	70.70	71,30	68.12	75.36
Soybeath meal	19.82	14.92	1	I,	Ì	ſ	I	I	i.	ŝ	т	١
Full-fat soybean	I	I	24.50	18.36	Ι	I	I		I	I	ł	I
Canolu meal	I	ļ	a,		24.40	8.50	I	Ι	Ι	Ι	I	
Rapeseed meal	Ι	Ι	Ι	I	Ι	1	25.92	19.64	Ι	I	ł	ł
Cottonseed meal	I	Ι	I	Ι		Ι			21.54	16.32	ł	I
Perilla meal	Ι				Ι	ſ	I	I	с Ц	ş I	23.38	17.72
Tallow	1.58	1.54	Ι	1	4,40	3.65	6.77	5.43	5.12	4.20	6.05	4.89
Lysine	I	1	0.04	I	0.05	Ι	0.21	0.12	0.24	0.14	0.39	0.25
Limestone	2.73	0.80	0.75	0.80	1.00	0.93	0.93	96.0	1 25	1.19	0.93	0.93
Dicalcium-phosphate	0.92	0.45	06-0	0 45	0.17	í	0.32	Ι	0.30	Ι	0 8	Ι
Salt	035	0.35	0.35	9.35	0.35	0.35	0.35	0.35	035	0.35	0.35	035
V-M mixture ¹	0.30	010	010	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Antibiotics ²	0.20	0 20	0.20	0 20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Chemical composition ^a												3
ME (kcal/kg)	3,260,39	1.75.30	3,285,51	3.262.42	3,263,18	26,275,95	3,261.33	10 54	35.0.38	3,275,15	3.200.93	01.275.0
CP (%)	15 20	3.50	15.23	13.51	5.20	3.50	5.20	13.50	15.20	11.50	1< 20	13 50
Lysine (7_o)	0.77	0 64	22'0	0.61	110	0.61	0.77	090	0 77	0 60	0.77	0.60
Methionine (%)	0.25	0 23	0,25	D 24	0 0	0 27	0.30	D 2	0 24	0 23	0.33	0 29
Ca (%)	0.61	0.50	0.62	0.50	0.61	0.50	0.61	0.50	0.61	0.50	0.61	0.50
P (%)	0.50	0 40	0.51	041	0,51	0.43	0.50	0.40	0 50	0.41	0.51	0.42

TABLE 1. FORMULA AND CHEMICAL COMPOSITION OF THE DIETS FOR FEEDING IRIAL

² Antibiotics: Virginianiyoin 10 mg/kg
 ³ Calculated value.

MOON ET AL.

mulation. More comprehensive information on their compositional and nutritional characteristics would enable one to adjust dietary ingredients to any differences.

The objectives of these studies were (1) to compare alternative protein sources to soybean meal in terms of growth performance and amino acid digestibilities in growing-finishing pigs, and (2) to compare ileal vs. fecal and apparent vs. true amino acid digestibilities.

Materials and Methods

Diets

For the feeding trial. experimental diets were formulated to maintain 3,260 kcal/kg ME and 15.2% CP for growing period (1 to 6 weeks) and 3.275 kcal/kg ME and 13.5% CP for finishing period (7 to 9 weeks). Dietary protein was provided by each test protein source [soybean meal, extruded hull-fit soybean, canola meal, rapeseed meal, cottonseed meal and perilla (*Perilla acimoides*, L.) meal] and the diets deficient in lysine were supplemented with synthetic L-lysine. The formula and chemical composition of the diets are given in table L All nutrients were formulated to meet or exceed the NRC nutrient requirements (NRC, 1988).

The cornstarch-based diets were used to estimate the protein and amino acid digestibility. Cr_2O_8 was included at 0.3% level in the diet and 0 to 5% of cellulose was used to control dietary energy level. A protein-free diet was used to estimate endogenous amino acid excretion. The formula and chemical composition of the diets for digestion trial are shown in table 2.

TABLE	2.	FORMULA	AND	CHEMICAL	COMPOSITION	\mathbf{CF}	THE	D ETS	FOR	DIGESTION	TRIAL
-------	----	---------	-----	----------	-------------	---------------	-----	-------	-----	-----------	-------

	Soybean	Full fat	Canola	Rapeseed	Cottonseed	Perilla	Protein
	meal	soybean	meal	meal	meal	meal	free
Ingredients (%):					54		
Soybean meal	36.87	_	_	_	_	- 11	_
Full-fit soybean	_	44.20	_	_		-	-
Canola meal	_	-	42.70	_	_	_	_
Rapeseed meal	_	_	—	44.20	_	_	_
Cottonseed meal			_	_	38.80	_	_
Perilla meal	_	_	_		—	41 70	
Corn starch	55.20	47.90	55.15	50.00	52.50	51.90	88.95
Cellulose	5.00	5.00	_	-	2.95	1.25	5.00
Corn oil	_			3.50	3.00	3.00	2.00
Limestone	0.18	0.18	0.70	0.65	1.10	0.70	
Dicalcium-phosphate	1.60	1.57	0.30	0.50	0.50	0.30	2.90
Salt	0.35	0.35	0.35	0.35	0.35	0.35	0.35
V-M mixture ¹	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Antibiotics?	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Cr_2O_3	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Chemical composition ⁸							
ME (kcal/kg)	3,417.29	3,537.41	3,380.96	3,326.12	3,332.84	3,326.82	3,740.58
CP (~)	16.22	16.22	16.23	16.18	16.18	16.18	0.00
Lysine (\circ_{\circ})	1.07	0.99	0.97	0.69	0.66	0.40	0.00
Methionine (%)	0.19	0.20	0.29	0.30	0.19	0.35	0.00
Ca (5)	0.61	0.61	0.63	0.63	0.61	0.63	0.79
P (%)	0.51	0.54	0.55	0.53	0.54	0.54	0.50

12 See the footnote of table 1.

³ Calculated value.

Design

A total of 54 castrated two way-crossbred pigs (Landrace \times Large White) with average of 25 kg of initial body weight were assigned in Completely Randomized Design for a feeding trial. Six treatments in the feeding trial had 3 replicates with 3 heads in each replicate. Seven boars weighing 25 to 30 kg and fitted with ilcocecal simple Tcannula were assigned in the 7×4 Youden, Square of Incomplete Latin Square Design for digestion trial. Cannulation was performed according to the procedure described by Walker et al. (1986). Each test period lasted seven days, and during this period equal amounts of diet mixed with water were given twice daily at the level of 5.3% body weight at 08:00 h and 20:00 h. Feces were collected for 24 hours on the 5th day after 4 days of adaptation period. On the 6th and 7th day postfeeding, ileal digesta was collected in soft plastic bags for 2-h intervals between 08:00 h and 20:00 h each day. On the second day of collection, the ileum collections were made in the alternative

2-h periods to those of the previous day. The entire feces and digesta samples were dried in an air-forced drying oven at 60° for 48 or 72 hours, respectively. All the samples prepared in this manner were ground with 1 mm mesh Wiley mill for chemical analyses.

Chemical analyses

Proximate nutrients of diets, intestinal digesta and leces were analyzed according to AOAC (1990) procedures. Cr was measured by atomic absorption spectrophotometer (Shimadzu, AA625). Amino acid contents were determined by automated amino acid analyzer (Model: 4150 alpha, LKB), following acid hydrolysis in 6N HC1 at 1 10°C for 16 hours (Mason, 1984).

Calculations

Nitrogen and amino acid (AA) digestibilities were calculated based on the levels of chromic oxide in feed, ileal digesta and feces according to the following equations.

540

Statistical Analyses

Treatment means were compared by Duncan's multiple range test (Duncan, 1955), using General Linear Model Procedure of SAS (1985) package program.

Results and Discussion

Growth performance

Table 3 shows daily weight gain, daily feed intake and feed efficiency of pigs fed six protein meal diets for 65-d postfeeding. Overall means of final body weights ranged from 52 to 82 kg. The most rapid body weight gain was observed in pigs fed soybean meal and full-fat soybean, the moderate one was in pigs fed canola meal and cottonseed meal, the least one was in pigs fed rapeseed meal and perilla meal (p < 0.05). Feed intake was highest for pigs fed full-fat soybean and pigs fed soybean meal, canola meal and cottonseed meal showed moderate feed intake. Pigs fed rapeseed meal and perilla meal showed the lowest feed intake. Feed efficiency was better for groups fed soybean meal and full-fat soybean than other protein meals (p < 0.05).

The performance of pigs fed cottonseed meal diet was low probably due to low lysine digestibility of cottonseed meal as described by Knabe et al. (1979). Furthermore, they indicated that growth performance of pigs fed cottonseed meal diets never equaled that of pigs fed soybean meal diet even if synthetic lysine was supplemented up to a total dietary lysine content of 0.8%. It was suggested that the growth depressing effect by rapeseed meal was due to the poor palatability, toxic effects of residual glucosinolate and the low digestibility of most of its amino acids (Cho and Bayley, 1972; Han et al., 1975). We couldn't explain about what caused to limit feed intake when fed perilla meal

TABLE 3. EFFECT OF PLANT PROTEIN SOURCES ON THE DAILY BODY WEIGHT GAIN, FEED INTAKE AND FFED EFFICIENCY OF PLGS

	Initial body weight (kg)	Final body weight (kg)	Daily weight gain (kg/d)	Daily feed intake (kg/d)	Feed efficiency
Soybean meal	25.0	79.6ª	0.84 ^a	2.38 ^{ab}	2.8 4 ^b
Full-fat soybean	25.2	82.0ª	0.87ª	2.56ª	2.94 ^b
Canola meal	25.6	70.0 ^b	0.68 ^b	2.35 ^{ab}	3. 4 3ª
Rapeseed meal	25.5	62.5°	0.57 ^e	2.10 ^b	3.71 ^a
Cottouseed meal	25.9	70.1 ^b	0.68 ²	2.39 ⁸⁵	3.52ª
Perilla meal	24.8	52.5ª	0.43 ^d	1.55°	3.65ª
SE ¹	0.14	2.58	0.04	0.09	0.10

wheel Values with different superscripts within the same column are significantly different (p < 0.05).

¹ Pooled standard error, n = 3.

Unprocessed full-fat soybeans did not improve pig performances due to its antinutritional factors or inefficient energy and protein utilization (Rackis, 1972; Cook et al., 1988; Cera et al., 1990). But extruded full-fat soybeans markedly improved animal performance in this study as indicated by Rackis (1972), Vandergrift et al. (1983) and Knabe et al. (1989). They reported that heating or extruding soybeans improved nitrogen, amino acid and energy digestibility, nitrogen retention and pig performance. Performance, feed intake, or palatability of pigs fed other protein meals did not exceed those of pigs fed either soybean meal or full-fat soybean as demonstrated by many workers (Han et al., 1975; Sauer et al., 1982; Kim, 1988; Mckinnon and Bowland, 1977; Cho and Bayley, 1972; Dyer et al., 1951; Hale and Lyman, 1961; Larson and Bell, 1967).

Amino acid digestibility

1) Apparent and true ileal digestibility

Table 4 presents the mean values of apparent and true ileal amine acid or crude protein digestibilities of six protein sources. Apparent ileal digestibilities of total essential amino acids were in the order of soybean meal, full-tat soybean, canola meal, cottonseed meal, rapeseed meal and perilla meal, respectively, from the highest to the lowest. No significant differences were observed between soybean meal and full-fat soybean (p > 0.05). Apparent ileal digestibilities of most essential amino acids of soybean meal and full-fat soybean were remarkably higher than those of other protein sources. There were no significant differences in apparent ileal protein digestibilities among soybean meal, full-fat soybean and cottonseed meal (p > 0.05). Those digestibilities, however, were significantly higher than those of rapeseed meal or perilla meal (p < 0.05).

Apparent ileal digestibility of lysine was 87.1 % for soybean meal, which was similar to the values estimated by Sauer et al. (1982), Green et al. (1988), Tanksley et al. (1981), Knabe et al. (1989), Tanksley and Knabe (1984) and Green and Kiener (1989). For soybean meal, apparent ileal digestibility of methionine (71.9%) was lower than the previous values (83.0-89.1%) whereas that of threonine (82.6%) was higher than those (73.6-76.0%) reported by Sauer et al. (1982), Tanksley and Knabe (1984) and Green and Kiener (1989).

Apparent ileal digestibility of essential amino acids was 81.6% for full fat soybean, which was in good agreement with the value in autoclaved soyflake reported by Ozimek et al. (1985). Apparent ileal digestibilities of lysine and threonine in full-fat soybean were 89.3% and 83.6%. respectively, in the present study. These values were higher than 82.0-78.0% and 70.0-67.0%, respectively, obtained from the studies by Knabe et al. (1989) and Rudelph et al. (1983).

Canola meal had slightly higher digestibilities than rapeseed meal without significant differences (p > 0.05). Apparent digestibilities of lysine (70.4 %) and threonine (65.6%) of canola meal measured at the end of small intestine were in good agreement with the values of 72.8-75.4% and 62.1-67.2%, respectively, reported by Sauer et al. (19 82), Sauer and Ozimek (1986), Knabe et al. (19 89) and Imbeah and Sauer (1991). For canola meal, methionine was the most digestible (89.3%) essential amino acid through the small intestine.

Apparent ileal digestibility of methionine in rapeseed meal (81.5%) agreed well with 82.0-84.3 % estimated by Sauer et al. (1982) and Green and Kiener (1989). Lysine and threonine digestibilities in rapeseed meal in this trial, 63.2% and 49.4%, respectively, were lower than the values of 69.0-73.5% and 64.0-68.0%, respectively, reported by Green and Kiener (1989) and Sauer et al. (19-82).

Marked reduction in ileal and fecal lysine digestibilities of cottonseed was also meal noticed in this study as indicated by Tanksley et al. (1981) and Furnya et al. (1986), which evidently led to poor performances. Therefore, it was suggested to add lysine to the diets composed of large proportion of cottonseed meal (Tanksley and Knabe, 1984). Apparent ileal digestibility of lysine in cottonseed meal was estimated to be 56.0%, which was close to the 53.0% reported by Sauer and Ozimek (1986), but lower than 67.0% estimated by Furuya and Kaji (1985). Methionine and threonine digestibilities of cottonseed meal at the end of small intestine were 56.0% and 52.5%, respec tively, in the present study, while the values ranged from 67.7% to 78.0% and 62.0% to 69.0%, respectively, in the studies by Tanksley and Knabe (1984) and Furuya and Kaji (1989).

Apparent ileal digestibility of lysine (66.6%) in perilla meal was in good agreement with 69.7% estimated by Kim (1988), while those of methionine and threonine, 58.1% and 46.6%, respectively, in the present study were relatively lower than the values of 92.3% and 79.0%, respectively, reported by Kim (1988).

Fecal or ileal amino acid digestibilities of soybean meal or full-fat soybean were reported to be relatively higher than those of canola meal, sunflower meal, perilla meal, cottonseed meal, peanut meal, teather meal, rapeseed meal, or meat and bone meal (Knabe et al., 1989; Cho and Bayley, 1972; Kim, 1988).

These results support those responses obtained from the feeding trial in which pigs fed either soybean meal or full-fat soybean grew more rapidly, ate more feed, and showed better feed efficiency than those pigs fed other protein sources.

Regardless of the dietary protein source, the apparent ileal digestibility of arginine was highest among other amino acids, which was in good agreement with the results of Knabe et al. (1989). Furuya et al. (1986), Tanksley et al. (1981) and Rudolph et al. (1983), whereas that of histidine was lowest. Among the dispensable amino acids, proline had the least digestibility, which appeared to be due to its high concentration in the endogenous protein as described by Holmes et al. (1974) and Green et al. (1987).

Similar to apparent ileal amino acid digestibi-

	Soybean	neal	Full-fat	soybean	C mola	meal	Rapesee	d meal	Cottonsee	d meal	Perilla	meal	SE	_
ICID	Apparent	T ue	Apparent	True	Apparent	True	Apparent	True	Apparent	Truc	Instruct A	Tric	Apparent	True
Crude protein	75.3ª	79.24	81.7a	84.9A	62.9b	68.2 ^B	52.7 ^c	59.1 ^c	446112	17.34	42.5d	$4\mathrm{K}\mathrm{N}^{0}$	3.04	2.70
issential amine	o ac ds													
ARG	94.0 ^a	94.6 ^{AB}	94,98	96.3A	90 Sa	90.98	90.7a	91.3 ^{AB}	92.8	93.4 ^{AB}	8).45	80.70	121	1.59
IIIS	(h4.5ª	60.9Å	(60.4^{8})	66.3 ^A	43.5bc	44.5AB	43.8hc	44 6 ^{AB}	51.6 ^{ab}	57.5AB	35.0°	40.6^{H}	2.76	3.62
ILE	86.5ª	87. A	\$2.6 ^a	83.5A	69.9b	71.7^{B}	55.8°	57.5 ^c	63. ^{bc}	64.6^{BC}	66.4 ^b	66.5 ^{BC}	2.65	2.40
LEU	86.0 ^a	87.4^	86.7a	88.2 ^A	72.35	8,41	62.2°	55.3 ^{c0}	68.1bc	71.2 ^{BC}	63.4c	63.8^{0}	2.43	2.27
LYS	87.19	88.5v	89 3a	v6.06	70 45	71,08	63.2bc	63.5 ^B	56.0°	66.91	66.6^{b}	66.78	2.96	3.42
MET	46' L	79.3 ^{18C}	75.26	\$2.5ABC	89.3ª	90,4A	81 Sab	83.2 ^{AB}	56.0°	73.5c	58, J¢	59.00	2.88	5.4
PHE	87.8ª	88.4^{Λ}	81.3ªb	NL:7AB	50.No	51.1 ^c	73.65	74.8 ^b	84.0 ^{ab}	84.9v	72.45	72.5%	2.91	2.79
λΗ.Γ.	82.6ª	85.0 ^A	83.6ª	85.74	65.6 ^b	в 69	49.4°	52. I ^D	52.5°	59, C	46.6 ^c	47.6^{D}	3.57	3.32
VAL	81.7ª	84.0^{Λ}	80.8ª	83.9A	q6112	75.0 ^B	53. d	57.8 ^D	63.5°	67.5 ^c	61 6 ^{cd}	63.3 ^{CD}	3.5%	2.23
Submean	82.5%	84.9 ^A	81 6 ^a	84.4^	69.4 ^b	70.9 ⁸	63 7bc	65.6 ^C	65.3 ^{bc}	2 .08	61.2°	62.3 ^c	2.02	2.04
Von-essential a	mino acds													
VIA	76.94	80 3v	76.3ª	80.3A	64.7b	70.38	51.9c	58.8c	58 6100	65 1 ^{18C}	52.30	34.55	2.64	2. 8
ASP	85,4%	\$7.5 ^A	90. a	×8'16	68.69	73.0^{B}	70.35	75.18	71,75	76.31	47.90	31.00	3 15	2.88
GLU	86.2 ^{ab}	K7.5AB	91.3ª	92. I A	14.2	78.2 ^c	26 lc	78.3 ^c	79,0 ^{bc}	81180	53.2d	51.5	2.73	2.63
GLY	78.2ª	×8.18	77.68	80.7 ^A	68.4 ^{ab}	76.2 ^A	59.7 ^b	64.2 ^B	58.84	64.6^{13}	30.5c	44.26	3 14	2.95
PRO	70 I ^a	79.5A	74 8ª	80.9 ^A	55, I a	82.2A	26.8°	85.9 ^A	56.25	56.58	37.5°	44.7 ¹³	411	4.36
SER	85.5ª	87.4 ^A	85.0 ^a	87.5 ^A	65.62	68 9B	61,8 ^{bc}	65.6 ^B	64.6 ^b	68 3 ^B	53.2°	55.4 ^c	2.88	2.61
TYR	88.2ª	89.2 ^A	81.9ª	82.5 ^A	62. Jb	62.3 ^c	70.4b	71,0 ^B	81. B	82.7A	q 0/.	71.5 ^B	2.22	2 6
Submean	8 .5ª	84.8v	82.6 ^a	85. A	65.85	73.0 ^B	59.6b	71.3 ^B	67 [b	70,6 ^B	10.3%	54.2 ^c	2.64	2.32
Moan	82.0ª	84.8V	82.0ª	84.7v	67.80	71.9 ^B	61.9bc	68.J ^B	66. ^b	70.84	56.50	58.8 ^c	2.26	2.09

. Volues with different superscripts within the same row are significantly different (p < 0.05) $^{+}$ Pooted standard error, n=4.

QUALITY OF PLANT PROTEIN SOURCES IN PIGS

Apparent 82.2ª 93.8ab 65.5ª 85.3ª 85.3ª 85.3ª 81.0ab 87.4ª	True 91,4AB 68,4AB 87,7AB 87,7AB 88,2A 87,885	Apparent 69.8 ^b 89.3 ^{bc}	True	Apparent	True	American	True	A normality			
82.2ª 93.8ab 65.5ª 85.3a 85.3a 81.0ab 87.4a 87.4a	9,1,4AB 94,9AB 68,4AB 87,7AB 88,2A 83,2A 83,2A	48.98 48.98				manylate	1111	whitedate	1 1.00	Apparen	True
93.8ab 65.5 ^a 85.3a 85.3a 85.9a 81.0ab 87.4a 87.4a	94.9AB 68.4AB 87.7AB 88.2A 88.2A	591 6S	88.7 ^B	66.3^{b}	88.38	70,8 ^b	93.0AB	52.90	73.4c	2.39	1.63
93.8ab 65.3 ^a 85.3 ^a 85.3 ^a 85.3 ^a 81.0 ^{ab} 87.4 ^a	94.9AB 68.4AB 87.7AB 88.2A 88.2A	39. Jbc									
65.5ª 85.3ª 85.3ª 85.9ª 81.0ªb 87.4ª	68.4AB 87.7AB 88.2A 83.2A 83.2A		90.5 ^{BC}	95.la	96.0^{AB}	93.3 ^{ab}	94 3 AB	86.6°	87.90	(),94	0.93
85.3 ^{8b} 85.3 ⁸ 85.9 ^a 81.0 ^{ab} 87.4 ^a	87.7AB 87.7AB 88.2A 88.2A	48.90	58.5BC	44. I ^c	56.3BC	91.Sab	72.2A	46_9 ^c	49.3 ^c	2.15	2.25
85.3ª 85.9ª 81.0ªb 87.4ª 87.4ª	87.7AB 88.2A 87 880	78.5bc	82.0 ^{BC}	72.4°	77.90	77.960	83.980	76.40	79.90	151	1.32
85.9ª 81.0ªb 87.4ª 87.4ª	88.2 ^A 87 8 ^{BC}	76.,75	80.0 ^{BC}	73.70	79.1BC	76.6 ^b	82.7ABC	12.90	76.9 ^c	1.57	1.42
81.0 ^{ab} 87.4 ^a 44 a	N7 880	56.8°	65.2 ^c	46.6ª	56.2 ^D	52.0 rd	63 I CD	68.0 ^b	77.18	3.39	2.78
87.4ª 44 a		в0.04	92.0 ^A	35. [^{ab}	88.8 ^{AB}	68.1 ^c	78.1 ^c	73.0bc	77.1C	017	1-65
н V.	89.5A	quez 18	84.7A	85.7a	88.88	8.5.6 ^a	89.0 ^A	76.4b	77.30	1.18	1.16
	87.0AB	46-27	79.9BCD	70.056	76.3 ^{c0}	46.37	82.9ABC	65.5c	d 12	1.82	1.59
86.0 ^a	88.6 ^A	qe 6/.	82.4 ^{AB}	12.60	77.9 ^B	91 I 18	86,5 ^{AB}	73.95	77.6 ^B	2.68	1.57
83.8ª	86, JAB	75.1 ^b	79.5 ^{BC}	71.75	77.5 ^c	47.44	81,4 ^{AIW}	q] 12	75.0 ^c	1.4	
63.3b	68.2 ^B	71. J ^{ab}	72.7AB	66.4 ^{ab}	379 gAB	72.8 ^{ab}	N 13A	quố ()/.	75.7AB	141	85-1
e /.*68	91 6 ^{AB}	74.5°	80 2 ⁰	79.6b	84.7 ^{cb}	82.15	8.1.8BC	66.9d	72.3 ^E	1.80	1.55
89,5ª	90.9AB	82.95	85.9 ^B	86.7ab	89.1AB	ge6'28	91-16	117	75. J ^c	1.34	[{`}]
75.32	78.6 ^{AB}	76.2ª	80.24	75.78	10.75	78.2ª	84.6^{A}	68.0b	72.48	1.10	1.14
86.1a	86.6^	75. Ib	78.8 ^{AB}	66.9c	73.4 ¹⁵	75.75	83.34	45.24	48.7°	2.94	2.56
88.0 ^a	90 2 ^{AB}	75.0 ^b	79.4 ^b	77.85	82.7cp	79.5b	85.2BC	63.30	$21.0^{\rm K}$	1.86	1.54
82.8abc	85.9AB	78.2abc	87.4 ^{AB}	74.6°	79.4 ^B	85.3a	89.4A	15.5bc	10.19	1.35	52.1
82. Jab	84.6*	76,156	80.0V	75.3°	80.6^{A}	ND THE	86.14	66, J ^d	70.6 ⁰	41	1.3
\$3.0ª	85.4 ^{AU}	75.6 ^b	79,7tec	73.3bc	78.8вс	76.9b	83.4AB	68.90	23. JC	1.35	<u>, , , , , , , , , , , , , , , , , , , </u>
	63.35 89.7a 89.5a 36.1a 38.0a 32.1a 82.1a 82.1a 82.1a	63.3 ^b 68.2 ^{fl} 89.7 ^a 91.6 ^{AB} 89.5 ^a 91.6 ^{AB} 75.3 ^a 78.6 ^{AB} 75.3 ^a 86.6 ^A 88.0 ^a 90.2 ^{AB} 83.0 ^a 90.2 ^{AB} 83.0 ^a 84.6 ^A 83.0 ^a 84.6 ^A	63.3b 68.2f 71.1ab 89.7a 91.6AB 74.5c 89.5a 90.9AB 82.9b 75.3a 78.6AB 75.1b 36.1a 86.6A 75.1b 38.0a 90.2AB 75.0b 82.8abc 83.9AB 75.0b 82.8abc 84.6A 76.1bc 82.1ab 84.6A 76.1bc	63.3 ^b 68.2 ^{fh} 71.1 ^{ab} 72.7 ^{AB} 89.7 ^a 91.6 ^{AB} 74.5 ^c 80.2 ^b 89.5 ^a 90.9 ^{AB} 82.9 ^b 85.9 ^b 75.3 ^a 78.6 ^{AB} 76.2 ^a 80.2 ^A 36.1 ^a 86.6 ^A 75.1 ^b 78.8 ^{AB} 38.0 ^a 90.2 ^{AB} 75.0 ^b 79.4 ^b 32.8 ^{abc} 85.9 ^{AB} 75.0 ^b 79.4 ^b 32.8 ^{abc} 84.6 ^A 76.4 ^{bc} 82.4 ^{AB} 33.0 ^a 84.6 ^A 76.4 ^{bc} 80.0 ^A	63.3 ^b 68.2 ^{fh} 71.1 ^{ab} 72.7 ^{AB} 66.4 ^{ab} 89.7 ^a 91.6 ^{AB} 74.5 ^c 80.2 ^D 79.6 ^b 79.6 ^b 75.3 ^d 78.6 ^{AB} 76.2 ^a 80.2 ^A 75.7 ^a 75.3 ^d 78.6 ^{AB} 76.2 ^a 80.2 ^A 75.7 ^a 80.1 ^A 75.0 ^b 79.4 ^D 77.8 ^b 88.0 ^a 90.2 ^{AB} 75.0 ^b 79.4 ^D 77.8 ^b 83.0 ^a 90.2 ^{AB} 78.2 ^{abc} 82.4 ^{AB} 74.6 ^c 83.1 ^{ab} 84.6 ^A 76.1 ^{bc} 80.0 ^A 75.3 ^c 83.1 ^{ab} 84.6 ^A 76.1 ^{bc} 82.4 ^{AB} 74.6 ^c 83.4 ^{ab} 75.6 ^b 79.4 ^D 77.8 ^b 75.3 ^{ab} 75.0 ^b 79.4 ^D 77.8 ^b 75.6 ^b 79.4 ^D 77.8 ^b 75.6 ^b 79.4 ^D 77.8 ^b 75.6 ^b 79.4 ^D 77.8 ^b	63.3b 68.2 ^h 71.1 ^{ab} 72.7 ^{ab} 66.4 ^{ab} 73.9 ^{Ab} 89.7 ^a 91.6 ^{Ab} 74.5 ^c 80.2 ^b 79.6 ^b 84.7 ^{cb} 89.5 ^a 90.9 ^{Ab} 82.9 ^b 85.9 ^b 86.7 ^{ab} 89.1 ^{Ab} 75.3 ^a 78.6 ^{Ab} 75.1 ^b 86.2 ^A 75.7 ^a 89.1 ^{Ab} 75.3 ^a 78.6 ^{Ab} 76.2 ^a 80.2 ^A 75.7 ^a 89.1 ^{Ab} 75.3 ^a 78.6 ^{Ab} 76.2 ^a 80.2 ^A 75.7 ^a 89.1 ^{Ab} 56.1 ^a 86.6 ^A 75.1 ^b 78.8 ^{Ab} 66.9 ^c 73.4 ^b 58.0 ^a 90.2 ^{Ab} 75.1 ^b 78.8 ^{Ab} 66.9 ^c 73.4 ^b 58.0 ^a 90.2 ^{Ab} 75.1 ^b 78.8 ^{Ab} 77.8 ^b 82.7 ^{cb} 52.8 ^{abc} 85.9 ^{Ab} 78.2 ^{abc} 82.4 ^{Ab} 74.6 ^c 79.4 ^b 52.1 ^{ab} 84.6 ^A 76.1 ^{bc} 80.0 ^A 75.5 ^c 80.6 ^A 53.0 ^{abc} 82.4 ^{Ab} 79.7 ^{bc} 73.3 ^{bc} 78.8 ^{bc}	63.3b 68.2f 71.1ab 72.7AB 66.4ab 73.9AB 72.8ab 89.7a 91.6AB 74.5c 80.2b 79.6b 84.7cb 82.1b 89.5a 91.6AB 74.5c 80.2b 79.6b 84.7cb 82.1b 75.3a 78.6AB 76.2a 80.2A 75.7a 75.7a 77.8b 87.9b 75.3a 78.6AB 76.2a 80.2A 75.7a 77.8b 87.9b 75.3a 78.6AB 76.2a 80.2A 75.7a 77.8b 87.9b 56.1a 86.6A 75.1b 78.8AB 66.9c 73.4b 75.7a 58.0a 90.2AB 75.0b 79.4b 77.8b 82.7cD 79.5b 58.0ab 85.9AB 79.4b 77.8b 82.7cD 79.5b 52.8abc 82.4AB 74.6c 79.4B 85.3a 82.1ab 84.6A 76.1bc 80.0A 75.3c 80.6A 82.1ab 84.6b 76.7bc 79.4B 85.3a 82.1ab 84.6b 76.7bc 79.4B 85.3a 82.1ab 85.0AB 75.3c 80.6A 79.4B 82.4b 76.7bc 79.4B 76.7b 79.4B <	63.3b 68.2h 71.1ab 72.7AB 66.4ab 73.9A6 72.8ab 81.2A 89.7a 91.6AB 74.5c 80.2b 79.6b 84.7cb 82.1b 87.9ab 81.2A 89.5a 90.9AB 82.9b 85.9B 85.9b 89.1AB 87.9ab 91.1AB 75.3a 78.6AB 76.2a 80.2A 75.7a 79.4b 77.8b 84.6A 75.3a 78.6AB 76.2a 80.2A 75.7b 87.9ab 91.1AB 75.3a 78.6AB 76.2a 80.2A 75.7b 87.9ab 91.1AB 75.3a 78.6AB 76.2a 80.2A 75.7b 87.9ab 91.1AB 56.1a 86.6A 75.7b 77.8b 82.7cD 78.2a 84.6A 58.0a 90.2AB 76.9b 77.8b 82.7cD 79.5b 85.3B 52.8abc 85.9AB 76.6c 79.4B 85.3a 89.4A 82.1ab 84.6A 75.5c 80.6A 85.3a 89.4A 82.1ab 84.6A 75.5c 80.6A 85.3a 89.4A 82.1ab 84.6A 75.5c 80.6A 85.3a 89.4A 82.1ab 84.6A 75.5c <	63.3b 68.2h 71.1ab 72.7AB 66.4ab 73.9AB 72.8ab 81.2A 70.9ab 89.7a 91.6AB 74.5c 80.2b 79.6b 84.7cb 82.1b 81.2A 70.9ab 89.5a 91.6AB 74.5c 80.2b 79.6b 84.7cb 82.1b 81.3M 70.9ab 75.3a 78.6AB 76.2a 80.2A 75.7b 84.7cb 87.9ab 91.1AB 75.3a 78.6AB 76.2a 80.2A 75.7b 84.5A 68.0b 56.1a 86.6A 75.1b 78.8AB 66.9c 73.4b 75.7b 81.3A 45.2a 56.1a 86.6A 75.1b 78.8AB 66.9c 73.4b 75.7b 81.3A 45.2a 55.3a 86.6A 75.4b 77.8b 82.7cb 79.5b 85.3A 45.2a 55.9ab 85.9AB 76.4b 75.3c 80.6A 75.3c 80.4A 75.5c 52.8abc 85.9AB 79.4b 75.7b 85.3a 89.4A 75.5c 52.8abc 85.9AB 75.5c	63.3b 68.2f 71.1ab 72.7AB 66.4ab 73.9Ab 72.8ab 81.2A 70.9ab 75.7AB 89.7a 91.6AB 74.5c 80.2b 79.6b 84.7 cb 82.1 b 81.2 A 70.9ab 75.7 AB 89.5a 90.9AB 82.9b 85.9 b 89.1 AB 87.9 ab 91.1 AB 72.3 B 89.5a 90.9AB 82.9b 85.9 b 89.1 AB 87.9 ab 91.1 AB 75.7 B 75.3a 78.6AB 76.2a 80.2 A 75.7 B 87.9 ab 91.1 AB 75.1 C 75.3a 78.6AB 76.2a 80.2 A 75.7 B 87.9 ab 91.1 AB 75.4 B 56.1a 86.6A 75.1b 78.8AB 66.9 C 73.4 B 75.7 C 84.6 A 68.0 D 72.4 B 56.1a 90.2AB 75.7B 87.9 ab 82.7 CD 79.5 B 83.3 A 45.2 a 48.7 C 52.8ac 85.9AB 75.4B 82.7 CD 79.5 B 83.3 A 45.2 G 43.7 C 82.1ab 84.6A 76.4B 7	63.3b 68.2f 71.1ab 72.7AB 66.4ab 73.9AB 72.8ab 81.2A 70.9ab 75.7AB 141 89.7a 91.6AB 74.5c 80.2b 79.6b 84.7cb 82.1b 81.2A 70.9ab 75.7AB 141 89.5a 90.9AB 82.9b 85.9b 80.1AB 72.4b 75.1c 134 75.3a 78.6AB 76.2a 80.2A 75.7a 87.9ab 91.1AB 72.4B 1.10 75.3a 78.6AB 76.2a 80.2A 75.7a 87.9ab 91.1AB 72.4B 1.10 75.3a 78.6AB 76.2a 80.2A 75.7b 87.3A 45.2c 12.4B 1.10 75.3a 78.6AB 75.1b 78.8AB 66.9c 73.4b 75.7b 87.3A 45.2c 1.10 86.6A 75.1b 78.8AB 66.9c 73.4b 75.7b 87.3A 45.2c 1.10 ^a 1.10 ^a 86.1a 75.0b 79.4b 75.7b 87.3A 45.2c 1.10 ^b 1.86 ^a 1.10 ^b 1.86 ^a 1.06 ^b

lities, overall tendencies in the true ilea: amino acid digestibilities almost unchanged. The true digestibility values, however, tended to be higher than the apparent digestibility values by 2.3-6.2 percentage units because endogenous amino acids were subtracted from the total amount of amino acids in ileal digesta. That is to say, the apparent digestibility may underestimate the real availability of nitrogen and amino acids in swine.

2) Apparent and true fecal digestibility

Apparent and true fecal digestibilities of crude protein and amino acids of six protein sources are presented in table 5. Soybean meal and full-fat soybean had more digestible essential and nonessential amino acids in the total digestive tract than other protein sources.

In general, apparent fecal digestibilities followed the same pattern as the apparent ileal digestibility, but the values tended to be higher when measured over the total digestive tract due to the disappearance of utrogen in the hind gut. So, the digesubility measured over the total digestive tract may overestimate the real availability of amino acids since all amino acids would be deaminated by microorganisms to yield ammonia and various amines of no nutritional value in the large intestine as described by Fauconneau and Michel (1970), Michel (1966) and Zebrowska (1973). When iteal digestibility values are subtracted from fecal ones, a positive value indicates the amount of disappearance or extent of digestion in the large intestine (in percentage units), while a negative value indicates a synthesis of that amino acid in the large intestine. In most instances, amino acids disappeared from the large intestine. Greater disappearance in the large intestine occurred, in general, for amino acids with the lower digestibilities at the end of the small intestine, which were, for example, phenylalanine in canola meal, threonine in rapeseed meal and cottonsced meal and glycine in perilla meal. These were in good agreement with the results of Tanksley et al. (1984). The amount of amino acids disappeared in the large intestine was greater in canola meal, rapesced meal, cottonseed meal and perilla meal than in soybean meal and full-fat soyhean. For individual amino acids, proline, in general, was the most disappeared amino acid in the hind gut, while the net synthesis of lysine in the large intestine was observed in all protein sources except perilla meal. Net synthesis

of some amino acids including lysme, arginine, methionine, cystine and tyrosine has been previously reported by other workers (Holmes et al., 1974; Tauksley et al., 1981; Tanksley and Knabe, 1984; Sauer and Ozimek, 1986).

True fecal digestibilities of essential and nonessential amino acid of each protein source tended to increase slightly more than the corresponding apparent fecal digestibilities since the contribution of endogenous amino acids was eliminated.

From these results, ileal or true digestibility seemed to be more accurate in determining digestible amino acid contents of pig diets rather than feeal or apparent digestibility. Therefore, swine feeds should be formulated based on true ileal amino acid digestibility for normal growth of pigs.

Literature Cited

- AOAC. 1990. Official methods of analysis, 15th Ed. Association of Official Analytical Chemist. Washington, D.C.
- Cera, K. R., D. C. Malan and G. A. Reinhart. 1990 Evaluation of various extracted vegetable oils, roasted soybeans, medium-chain triglyceride and an animal-vegetable fat blend for postweaning swine. J. Anim. Sci. 68:2756.
- Cho, C. Y. and H. S. Bayley. 1972 Amino acid composition of digesta taken from swine receiving diets containing soybean or rapesced meals as sole sources of protein. Can. J. Physicl. Pharmacol. 50:513.
- Cook, D. A., A. H. Jensen, J. R. Fraley and T. Hymowitz 1988. Utilization by growing and finishing pigs of raw soyheans of low kuritz trypsin inhibitor content. J. Anim. Sci. 66 1686.
- Denton, A. E. and C. A. Elvehjem. 1953. Enzymatic libration of amino acids from different proteins. J. Nutr. 49:221.
- Denton, A. E. and C. A. Elvehjem. 1954. Amino acids concentration in the portal vein after ingestion of amino acid. J. Biol. Chem. 260:455.
- Duncan, D. B. 1955. Multiple range and multiple F tests Biometrics 11:1.
- Dyer, J. A., A. E. Cullison and W. J. Hays 1951. Special solvent cotronseed meal with and without vitamin B_{12} supplement and streptomycin as a source of protein for pigs. J. Anim. Sci. 10:624
- Engster, H. M. 1985. A collaborative study to evaluate a precision-fed rooster assay for true amino acid availability in feed ingredients. Poultry Sci. 64:487
- Fauconneau, G and M. C. Michel. 1970. In Mammalian Protein Metabolism. Vol. 4 p. 481. New York, Academic Press.
- Ford, J. E. 1960. A microbiological method for assessing the nutritional values of proteins. Br. J. Nutr. 14,485.
- Furuya, S. and Y. Kaji, 1989. Estimation of the true

i cal digestibility of amino acids and nitroger, from their apparent values for growing pigs. Anim. Feed Sci. Tech. 26:271.

- Furiya, S. R. Nagano and T. Kaji. 1986. True ileal digestibility of crude protein and amino acids in protein sources as determined by a regression method for growing pigs Jap. J. Zootech. Sci 57 (10):859.
- Green, S. and T. Kiener. 1989. Digestibilities of nitrogen and amino acids in soya-bean, sunflower, meat and rapesced meals measured with pigs and poultry Anim. Prod. 48:157.
- Green, S., S. 1. Bertrand, M. J. C. Duron and R. A. Maillard. 1987. Digestibility of amiro acids in maiz c. wheat and barley meal, measured in pigs with cleo-rectal anastemosis and isolation of the large intestine J. Sci. Food Agric. 41:29.
- Green, S., S. L. Bertrand, M. J. C. Duron and R. Maillard. 1988. Digestibility of amino acids in soya-hean. sm:flower and groundnut meal, measured in pigs with ileo-rectal anastomosis and isolation of the large intestine. J. Sci. Food Agric 42:119.
- Gupta, J. D. and C. A. Elvehjem 1957 Biological availability of tryptophan. J. Nutr. 62 313.
- Hale, F. and C. M. Lyman. 1961. Lysine supplementation of sorghum grain-cottonseed meal rations for growing-fattening pigs. J. Anim. Sci. 16:364
- Hau, I. K., D. J. Yoon and J. H. Choi. 1975. Studies on the use of canadian rapeseed meal in the hog rations. Kor. J. Anim. Sci. 17:132.
- Holmes, J. H. G., H. S. Bayley, P. A. Leadbeater and F. D. Horney 1974 Digestion of protein in small and large intestine of the pig. Brit. J. Nutr. 32: 479.
- Imbeah, M. and W. C. Sauer. 1991. The effect of dictary 'evel of fat on amino acid digestibilities in soybean meal and canola meal and on rate of passage in growing pigs. Livest. Prod. Sci. 29:227.
- Kim, M. K. 1988. The determination of digestibility of amino acids in feedstuffs and growing performance affected by digestible amino acids by growing pigs. MS. thesis. Seoul National Univ.
- Knabe, D. A., D. C. LaRue, E. J. Gregg, G. M. Martinez and T. D. Tanksley, Jr. 1989. Apparent digestibility of nitrogen and amino ocids in protein feedstuffs by growing pigs. J. Anim. Sci. 67:441.
- Knabe, D. A., T. D. Tanksley, Jr. and J. H. Hesby, 1979. Effect of lysine, crude fiber and free gossypol in cottonseed meal on the performance of growing pigs. J. Anim. Sci. 49:134.
- Kuiken, K. A. and C. M. Lyman. 1948. Availability of amino acid in some foods. J. Nutr. 36:359.
- Larson, L. M. and J. T. Bell. 1967. Compensatory growth of pigs following 'ysine deficiency J. Anim-Sci. 20:904 (Abstr.).
- Low, A. G. 1979. Studies on digestion and absorption in the intestities of growing pigs 6. Measurements of the flow of amino acids. Br. J. Nutr. 41:147.

- Mason, V. C. 1984. Metabolism of nitrogenous compounds in the large gut. Proc. Nutr. Soc. 43:45.
- Mckinnon, P. J. and J. P. Bowland. 1977. Comparison of low glucosinolate low enucic acid rapeseed meal (CV Tower), commercial rapeseed meal and soybean meal as sources of protein for starting, growing and finishing pigs and young rats. Con. J. Anim. Sci. 57:663.
- Mickel, M. C. 1966. Metabolism of the intestral flora of pigs. Breakdown of L- and D-amino acid. Ann. Biol. Anim. Biochem. Biophys. 6:33
- NRC. 1988. Nutrient requirements of swine. National Academy Press, Washington, D.C.
- Ozimek, L., W. C. Sauer and G. Ozimek 1985 Ileai and fecal digestibility of protein and amino acids and activities of panercotic enzymes in pigs fed diets with different levels of soybear protease inhibitor (s). Proc. III Jut. Seminar on Digestive Physiology in the Pig, Kollekolle, Deumatk pp. 146
- Rackis, J. J. 1972. Biologically active components. In A. K. Smith and S. J. Circle (ED.). Soybeans: Chemistry and Technology. Vol. 1. Proteins. pp. 158.
- Rudolph, B. C., L. S. Boggs, D. A. Knabe, T. D. Tanksley, Jr. and S. A. Anderson. 1983. Digestibility of nitrogen and amino acids in soybean products for pigs. J. Anim. Sci. 57:373
- SAS 1985. SAS user's guide: Statistics, SAS Inst. Inc. Cary, NC
- Sanger, F 1945. The estimation of the available lysine in foods. Biochem. J. 39:507.
- Sauer, W. C., R. Cichon and R. Misir. 1982. Amine acid availability and protein quality of canola and rapeseed mea, for pigs and rats. J Anim Sci. 54, 292.
- Sauer, W. S. and J. Ozimek 1986. Digestibility of amino acids in swine results and their practical applications. A review Livest Prod. Sci. 15:367
- Tarksley, T. D. Jr. and D. A. Krabe. 1984 Ileal digestibilities of amino acids in pig feeds and their use in formulating diets. In W. Haresign and D. J. A. Cole (Eds.), Recent Advances in Animal Nutrition. Butterworths, London, pp. 75.
- Tanksley, T. D. Jr., D. A. Knabe, K. Purser, T. Zehrowska and J. R. Corley 1981 Apparent digestibility of amino acids and nitrogen in three cottonseed meal and one soybean meal. J. Anim. Sci. 52:769.
- Vandergrift, W. F., D. A. Knahe, T. D. Tanksley, Jr. and S. A. Anderson. 1983. Digestibility of nutrients in raw and heated soyflakes for pigs. J. Anim. Sci. 57:1215.
- Wolker, W. R., G. L. Morgan and C. V. Maxwell. 1986 Ileal cannulation in haby pigs with a simple T-cannula. J. Anim. Sci. 62:407.
- Zebrowska, T. 1973. Influence of dietary protein source on the rate of digestion in the small intestine of prgs. Part I. Amount and composition of digesta-Rocz. Nauk Rol Ser R Zeptech 95:115