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Three-Dimensional Magnetotelluric Modeling Using Integral Equations

Hee Joon Kim* and Dong Sung Lee*

ABSTRACT: We have developed an algorithm based on the method of integral equations to simulate the magnetotel-
luric (MT) responses of three-dimensional (3-D) bodies in a layered half-space. The inhomogeneities are divided
into a number of cells and are replaced by an equivalent current distribution which is approximated by pulse
basis functions. A matrix equation is constructed using the electric Green’s tensor function appropriate to a layered
earth, and is solved for the vector current in each cell. Subsequently, scattered fields are found by integrating
electric and magnetic Green’s tensor functions over the scattering current. About a 3-D conductive body near
the earth’s surface, interpretation using 2-D transverse electric modeling schemes can imply highly erratic low
resistivities at depth. This is why these routines do not account for the effect of boundary charges. However,
centrally located profiles across elongate 3-D prisms may be modeled accurately with a 2-D transverse magnetic
algorithm, which implicitly includes boundary charges in its formulation. Multifrequency calculations show that
apparent resistivity and impedance phase are really two complementary parameters. Hence, they should be treated

simultaneously in broadband MT interpretation.

INTRODUCTION

Magnetotelluric (MT) data reflects, strictly speak-
ing, responses from three-dimensional (3-D) resistiv-
ity structure in the earth, but traditionally they have
been interpreted using 1-D and sometimes 2-D mod-
els. This tradition has arisen because 3-D modeling
routines require considerable computing means to
handle complex earth structure, but such means are
not readily available. This shortcoming produces a
lack of concensus on the interpretive errors which
occur when 1-D and 2-D computational aids are
used in 3-D areas.

The scattering of electromagnetic waves from 3-D
resistivity structure in the earth has remained difficult
to model. For over a decade, integral equation ap-
proaches have been studied by many workers (e.g.,
Hohmann, 1975; Das and Verma, 1982; Wannamak-
er et al, 1984a). They are most efficient for model-
ing one or a few buried prisms and have been val-
uable for basic physical understanding and for estab-
lishing the validity of 1-D and 2-D interpretation
of field data.

This paper presents recent advances in accuracy
and versatility of 3-D MT modeling using integral
equations over the previous works presented by Wan-
namaker et al. (1984a) and Hohmann (1988). Of
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great importance in obtaining an accurate solution
is a proper treatment of boundary charge contribu-
tions from the surface of the 3-D body as shown in
Wannamaker (1991). To reduce computational cost,
we employ the fast Hankel tansform algorithm (An-
derson 1982; Kim and Lee, 1994) in evaluating
Green’s tensor integrals. The 3-D integral equation
solution is verified through comparison with conven-
tional 3-D and 2-D responses. Finally, the enhanced
algorithm is used to understand the validity of 2-D
interpretation assumptions over 3-D structures.

INTEGRAL EQUATION FORMULATION
Integral Equations

Fig. 1 shows a 3-D body in an n-layered host. The
body is confined to layer j in this illustration; o, and
g are the conductivities of the body and layer j, re-
spectively. The impedivity z=iwy is assumed to be that
of free space. Displacement currents are ignored in
the formulation.

The electric-field integral equations for the un-
known total electric and magnetic fields are given by
(Newman et al., 1986)

EO=E0)+(0-0) [ GFr, ECy, M
and
HO=H,0)+(0-0) [, GFe. nECdy, @)

where Ep(r) and H,(r) are the primary electric and
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Fig.41. Section view showing a 3-D body in a layered
earth.

magnetic field at r due to plane-wave sources and
1-D earth layering. The Green’s tensor functions G
(r, ) and GF(r, r) relate the electric and magnetic
field, respectively, in layer / to a current element at
r in layer j, including /=j. The derivation of the
Green’s tensor functions is given by Wannamaker
et al. (1984a).

Equations (1) and (2) replace the 3-D body by an
equivalent scattering current distribution (Harrington,
1961). This scattering current is defined by

Js(r)=(oy— G)E(r) 3

where Jg(r) is nonzero only over the volume of the
body.

Matrix Formulation

Once the electric field in the body is known, elec-
tric and magnetic fields can be computed anywhere
using equations (1) and (2). Van Bladel (1961) show-
ed that equation (1) is also valid inside the body
since a principal value of the integral exists. A matrix
solution can then be constructed from equation (1)
using the method of moments with pulse basis subsec-
tional functions (Harrington, 1968).

Hohmann (1975) showed that if the 3-D body in
equation (1) is divided into N cells, the total electric
field at the center of the cell m due to N cells can
be approximated by

N
Eyrm)=Ey(rm)+ ;(obn—q)lf(rm; r2) Ex(r.), @

where E,(r,) is the total electric field at the center

of cell m. In each cell the body conductivity o, and
total electric field are assumed to be constant and
the Green’s tensor function for a prism of current
is defined by

I r=, GEtm ryir. ®)

Equation (4) can be rearranged to
N
n;[(crbn—q)lf(rm; 1)~ 8nnl Es(r)=—Ey(rn),  (6)

where

I if m=n,

5"‘":{ 0 if m#n. O

The tensors 7 and 0 are 3X3 identity and null tensor,
respectively. Finally, considering all N values of m,
a concise matrix equation is written as

M-E,=-E, ®)
where M is the complex impedance matrix of order
3N.

Equation (8) is solved for the total electric fields
within all the cells. Once the electric field in the
body is known, the electric and magnetic fields out-
side the body are given by discrete versions of equa-
tions (1) and (2). That is,

N
E()=E0)+ 2. (Gw— )5 1) Enr), ®
and
N
H()=H,(r)+ ;(abro,-)ff’(r; r) En(ra), (10)

The cells representing the body need not always
be cubic. In many cases the numerical solution can
be improved by subdividing the body into rectangular
prisms rather than cubes (Wannamaker et al., 1984a).
Modifying the solution is simple, since integration
of the Green’s tensor function over a prism [equation
(5)] can be treated as a summation of integrations
over cubic subcells. Rectangular cells are useful for
approximating an elongate body, provided the scatter-
ing current is polarized parallel to the strike of the
body. Use of elongated cells is justified because the
scattering current varies more rapidly over the short
direction of the body. Newman et al. (1986) recom-
mend, however, that cells be cubic near corners of
an elongate body because variations in the scattering
current are more abrupt there.

Integration of Green's Functions

Calculation of I;(r,; r,) comprises a great deal of
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the effort in an integral equation solution. When the
inhomogeneity does not cut across layer interfaces,
as in Fig. 1, I=j throughout in equation (6). Each
cell in this case is coupled to every other cell by
a Green’s function composed of a primary or whole-
space component [°I(r.; r,)] and a secondary or
reflected component [ (7 r.)], ie.

L5 1) =Ly 1)+ (s 7). (11)

If the body cuts across layer interface, subscripts
I and j in equation (6) refer to the layers containing
cells m and n, respectively. Source and field cells
in different layers' are coupled only by secondary
Green’s function; whole-space components are not
given (Wannamaker et al., 1984a). Furthermore, both
primary and secondary components are split into vol-
ume current and free charge contributions pertaining
to the zy/; and (1/y;)VV-J;, terms, respectively, in equa-
tion (7) of Wannamaker et al. (1984a). Such a split-
ting allows volume integrations of the current contri-
bution and surface integrations of the charge contri-
bution (Wannamaker, 1991). Surface integrations for
the secondary charge Green’s functions lead to the
improvement over Wannamaker et al. (1984a) who
implement volume integrations throughout for the
secondary components.

Computational Effort

The secondary Green’s functions require Hankel
transformation of complicated kernel functions (Wan-
namaker et al, 1984a; Kim and Lee, 1994). To
speed up computation, tables of the five electric and
four magnetic Hankel transforms are set up prior
to matrix formulation and scattered field calculation,
from which specific values of Hankel transform are
obtained using four-point cubic interpolation. The in-
terpolation is one-dimensional over tables for each
pair of field cell/point-source cell depth values. Wan-
namaker (1991) showed that in matrix calculation
the 1-D interpolation is faster by a factor of 3 than
the 3-D interpolation of Wannamaker et al. (1984a).

We computes the table values using the fast Han-
kel transform (FHT) algorithm developed by Ander-
son (1982). Since FHT is available for performing
not only lazged but also related convolutions, the five
electric and/or four magnetic Hankel transforms can
be evaluated simultaneously (Kim and Lee, 1994).
Moreover, by reciprocity, we know that IF(r.; r,) is
a symmetric matrix, i.e.,

Lws r)=L 0 ). 12)

This implies that the number of elements to be cal-
culated and stored is reduced by a factor of 2.
The computation time required to build and factor
the impedance matrix can be excessive; the matrix
is full, with dimensions 3NX3N, where N is the
number of cells. Fortunately, Tripp and Hohmann
(1984) showed that the required computation time
can be substantially reduced for a body with two ver-
tical planes of symmetry. The impedance matrix for
such a body is block diagonalized using the group
theory (Tripp and Hohmann, 1984). The block-diago-
nalized matrix consists of four submatrices, each with
dimension (3N/4)X(3N/4). The block-diagonalized
matrix now requires one-quarter of the storage of the
original matrix, and the number of operations requir-
ed for matrix inversion is smaller by a factor of 12.
Furthermore, the memory requirement is reduced by
a factor of 16, because it is only necessary to store
one of the four submatrices in memory at a time.

Apparent Resistivity and Impedance Phase

In MT work, we usually do not interpret electric
and magnetic fields themselves because they depend
upon the source fields over which we cannot control.
Instead, we look at relationships between these fields,
such as impedance tensor. It all contains information
about the subsurface, however, it is very difficult to
make any physical interpretation by looking directly
at them. Therefore, some manipulation of the quan-
tity is necessary to yield more recognizable parame-
ters.

The horizontal electric and magnetic fields at the
earth’s surface can be related by the frequency do-
main expression

E~Z.H+Z,H, 13)
and

E,=Z.H.tZ,H, (14)
or in a concise form

E=[Z]H, (15)
where

= %% o

E and H are vectors formed by (E,, E,) and (H,, H,),
respectively, and Z is the impedance tensor.

Apparent resistivity and impedance phase are then
calculated from
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05=1Z;1* o, a7
and
¢y=tan"'[Im(Z)/Re(Z)], i, j=x, ¥, (18)

where Im(Z;) and Re(Z;) are the imaginary and real
parts of Z;, respectively, and the phase ¢; is the angle
measured counterclockwise in the complex plane.
Because the impedance tensor varies with respect to
the coordinate system, apparent resistivity and im-
pedance phase derived from it also vary with the co-
ordinate system.

NUMERICAL RESULTS

Because of many possibilities for theoretical and
programming errors, it is important to verify the ac-
curacy of any numerical solution by comparing re-
sults computed by different workers. Ting and Hoh-
mann (1981) showed surface contour maps of various
MT parameters due to a 3-D prism buried in a half-
space (see Fig. 10 in Ting and Hohmann, 1981),
which include numerical data at some selected
points. Using these numerical data, we can compare
our numerical solution as shown in Figs. 2 and 3.

Figs. 2 and 3 compare p,, and p., respectively, ob-
tained from our algorithm with corresponding Ting
and Hohmann’s (1981) results. Agreement between
the two solutions is excellent, except for the points
above center and end of the body. The lack of agree-
ment in the points above the body is more apparent
at the low frequency. The difference between two
results is mainly attributed to an estimation of bound-
ary charge contributions from the surface of the
body, and they are more important at lower frequen-
cy. We believe that our results are more accurate
than those of Ting and Hohmann (1981), because
our method gives a better solution through a careful
treatment of surface charge terms in forming the ma-
trix and evaluating the receiver fields (Wannamaker,
1991; Kim and Lee, 1994), while Ting and Hohmann
(1981) used less accurate integro-difference method.

Another useful check, and one which is enlight-
ening for MT interpretation, is the comparison be-
tween results for elongated 3-D prisms and those for
a 2-D model with same cross-section. The model
used in this study is shown in Fig. 4. A conductive
prism of 5 £m is buried in a 50 £m host. The size
of body is 300X300 m in cross-section, and its depth
is 125 m.

Since there are two vertical planes of symmetry
passing through the center of the body, it is only
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Fig.2. Comparisons of apparent resistivities p, obtained
from this study with corresponding Ting and Hohmann’s
(1981) results at 0.1 and 10 Hz.
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Fig.3. Comparisons of p, obtained from this study with
corresponding Ting and Hohmann’s (1981) results.

necessary to divide one-fourth of the body into cells
as shown in the plan of Fig. 4. To see how strike
length of the body affects our results, we have chosen
four strike lengths: 300, 450, 600 and 900 m. When
the strike length is 600 m as shown in Fig. 4, for
example, the total number of cells is 52.

Figs. 5 and 6 show comparisons between our 3-D
results and 2-D results computed with Kim’s (1990)
finite-element algorithm at 32 Hz. Apparent resistivity
is plotted along a profile across the center of the
prism in y-axis: x=0. Fig. 5 shows the comparison
of the incident electric field parallel to the strike di-
rection. The 3-D results approach the 2-D curve as
the strike length increases, but a significant differ-
ence still exists between the longest prism and the
2-D model. This is primarily due to an accumulation
of surface charge at the boundaries perpendicular
to current flow in the 3-D prism, which does not
appear in the 2-D case.
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Fig.4. Prismatic 3-D body in an uniform half-space.
Dashes outline the discretization of the conductor into rec-
tangular cells, shown only for the right half of the body
in section and the upper right-hand quadrant in plan.
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Fig.5. Comparison of apparent resistivities p, between
2-D and 3-D model having different strike lengths.

Let us now briefly consider a 2-D inhomogeneity,
whose strike direction corresponds to the x-axis. An
x-oriented incident electric field includes only x-ori-
ented secondary E-fields about such a structure, so
that the total E-field parallels all resistivity contacts
and no boundary charges exist. This is the transverse
electric (TE) mode of wave polarization. At low fre-
quencies for the TE mode, neither volume currents
nor boundary charges pertain as sources for a secon-
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Fig.6. Comparison of apparent resistivities g, between
2-D and 3-D model.

dary electric field.

Similarly, a y-oriented incident E-field causes only
y-oriented secondary E-felds over a 2-D body. Such
a field polarization defines the transverse magnetic
(TM) mode. However, since the incident E-field for
this mode is normal to resistivity contacts in the
earth, boundary charges will be induced as source for
secondary E-fields. Because of boundary charges, the
TM mode in the case of conductive bodies exhibits
vertical current gathering (Park et al.,, 1983).

In the 3-D case, currents are not confined to flow
parallel to strike direction as in the 2-D (TE) case,
but they may be deflected laterally by regions of dif-
ferent copductivity. This lateral flow of current affects
the nature of the fields near structures of finite extent
in all three dimensions, and these effects are reflect-
ed in the calculated values.

Letting the incident E-field be perpendicular to
strike direction, we obtain another comparison as
shown in Fig. 6. Surface charges are included implic-
itly in the 2-D TM formulation, and the two solu-
tions do not diverge as much as they do for the TE
mode. As the strike length of the body decreases,
an effect of limited strike length is apparent particu-
larly in the range above the body.

Multifrequency calculations of apparent resistivity
and impedance phase were performed along a profile
across the center of the prism, and compared in Figs.
7~10 to calculations over a 2-D model of identical
cross-section. The strike length of the prism is 900
m. For display in pseudosection form, frequency and
y-axis serve as ordinate and abscissa, respectively, for
contour plots of apparent resistivity and impedance
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Fig.8. Pseudosection of impedance phases ¢, over 3-D
model compared to 2-D TE model pseudosection.

phase.
A strong discrepancy between 2-D TE and corre-

sponding 3-D responses occurs below about 64 Hz
(Figs. 7 and 8). p,, (3-D) approaches to low-frequency
asymptotes as frequency falls, while g, (2-D) gradual-
ly increases below about 32 Hz. On the other hand,
¢y (3-D) has nearly constant value around host im-
pedance phase of 45° below about 16 Hz, while ¢,
(2-D) has a minimum value of 35.2° about the center

of the body at 8 Hz.
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This 3-D anomaly may be explained again in terms
of boundary charges, acting on Py and @,. Such
charges do not occur in the 2-D body for this TE
mode, so that the wave equation for E(r) approaches
the homogeneous Laplace’s equation at lower freque-
ncies and there is a diminishing contribution by the
scondary E-field to the anomalous p, and @y. Boun-
dary charges severely depress the scattering current
within the 3-D body relative to the 2-D structure.
Hence, p, and @, for the 3-D model arrive at low-
frequency asymptotes around 16 Hz.
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Fig. 4

The fact that agreement between 2-D and 3-D re-
sponses of p, and ¢, is limited to high frequencies
leads that 2-D TE modeling algorithms may result
in erroneous resistivity cross-sections especially in
deeper region. In attempting to replicate the 3-D re-
sponses in Figs. 7 and 8 with a 2-D TE routine, one
would need to place false low resistivities at some
depth below conductive body.

In contrast to the responses depicted in Figs. 7 and
8, anomalies in p, and ¢, in Figs. 9 and 10 are
essentially the same for the two 3-D traverses and
2-D profiling at all frequencies. The reasons for this

agreement are twofold. First, no secondary H-field

exists in the 2-D TM mode, and there is only an
insignificant contribution by secondary H-fields to the
corresponding 3-D response. Second, boundary
charges on the sides of the body are included in both
2-D TM and 3-D formulations. These boundary
charge in turn lead to current gathering into the sides
of the 2-D and 3-D bodies. We infer from Figs. 9
and 10 that accurate cross-sections of earth resistivity
may be interpreted from profiles of MT measure-
ments across elongate, geometrically regular 3-D
bodies using 2-D TM algorithms.

A spatial distribution of apparent resistivity signa-

tures produced by the 3-D prism are displayed in
Fig. 11. At lower frequency of 4 Hz the anomalies
are roughly electric dipolar in nature, with under-
shoots and overshoots with respect to the host resisti-
vity of 50 £m occuring over the ends of the body
for p, and over the sides p.. Note also at the lower
frequency that the anomalies are greater than those
at 32 and 256 Hz. Boundary charges and current
gathering into conductive structure cause apparent
resistivities to vary spatially by a factor of 5 at 4 Hz.

Behavior of the impedance phases is entirely differ-
ent from that of the apparent resistivities, as shown
in Fig. 12. At 256 Hz, departures may appear in ex-
cess of 13° from the host phase of 45°, At 4 Hz,
on the other hand, the secondary E-field is essentially
in phase with the incident E-field and total and inci-
dent H-field are very neary equal, so that impedance
phase values deviate less than 5° from the host
phase.

We see stronger variation (which means higher re-
solving power) of impedance phase at the higher fre-
quency in contrast to the small variation diagnostic
of apparent resistivity at the higher frequency. This
suggests that apparent resistivity and impedance
phase are really two complementary parameters. He-
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nce, they should be examined simultaneoully for any
broadband MT exploration.

CONCLUSIONS

Although we developed an algorithm based on in-
tegral equation for simulating MT responses of 3-D
bodies in a layered earth, we examined only the case
of uniform half-space. The calculations we have
shown, in addition to verifying our numercal solution,
indicate that 3-D models are required for interpreting
MT data.

Relative to the TE response of a 2-D body of iden-
tical cross-section, the apparent resistivity g, due to
a conductive 3-D body suffers a widespread depres-
sion that is increasingly pronounced toward lower
frequencies. This depression of the 3-D responses re-
sults from boundary charges and current gathering.
Interpretation of such a 3-D response using 2-D TE
modeling routines would mislead to erroneously low
resistivities at depth below the true inhomogeneity.
Fortunately, our model studies have shown that cen-
trally located profiles of p. and ¢, across elongate
and geometrically regular 3-D prisms can be model-
ed accurately with a 2-D TM algorithm. Boundary
charges are included in both 3-D and 2-D TM for-

mulations. We have recognized that apparent resisti-
vity and impedance phase are a pair of complemen-
tary parameteres. Multifrequency calculations show
that behavior of the apparent resistivity is entirely
different from that of the impedance phase. Hence,
they should be examined simultaneouslly for any
broadband MT exploration.
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