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THE APPROXIMATE EIGENVALUES

OF AN OPERATOR MATRIX

HONG YOUL LEE AND YONG BIN CHOI

In [5, 6] R. E. Harte determined the spectrum of an "operator ma­
trix" by computing the joint spectrum for certain systems of elements
in a tensor product of normed algebras and applying a spectral mapping
theorem in several variables. In this note we derive a spectral mapping
theorem for the joint approximate eigenvalues in a tensor product of
normed algebras and then determine the approximate eigenvalues of
an operator matrix.

If a = (all a2, ... ,an) E An is an n-tuple of elements in a normed
algebra A then we write

n

u~(a) = {A E en : 1 rt cl L A(aj - Aj)}
j=l

and
n

uA(a) = { A E en : 1 rt cl L(aj - Aj)A}
j=l

for the almost left spectrum and the almost right spectrum, respec­
tively, of a E An with respect to A. We can make similar extension to
n-tuples of approximate eigenvalues ([2], [5], [6]): we shall write

and
n

TA(a) = {A E en: inf L IIx(aj - Aj)1I = o}
IIxll>l .. - J=l
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for the left approximate eigenvalues and the right approximate eig­
envalues, respectively, of a with respect to A. We have the obvious
inclusions:

f1(a) ~ a~(a) and fA(a) ~ aA(a).

If a E An then for each w E {a~, aA' f~,fA},w(a) is a compact subset
of en. The "spectral mapping theorem" for (,,) E {o-~,o-A,f~,TAJ is
the assertion that if a E An is commutative and f : en -t cm is an
m-tuple of polynomials inn variables then ([1], [2], [5J, [6])

. wf(a) = fw(a). (0.1)

If w E {a~, a-A,f~, fAJ then w has a "subprojective" property: that is,
if a E An and b E A m are arbitrary then

.w(a, b) ~w(a) x web).

If w is a subprojective system of mappings from An into subsets of en
we shall write -..

wb=p(a) = {A E en: (A,p) E w(a,b)}~

It was known ([4] Theorem 2.3; [6J Theorem 11.3.5) that if a E An
is cOnimutative and commutes with bEAm and if f : e n+m

-t e p

is .a p-tuple of polynomials' in n + m variables, then for each w E
{ -I -r -I -r} th . ·a1itO"A'O"A,1"A,1"A' ere IS equ y

wf(a, b) =U Wa=J..f(A, b). (0.2)
).ew(a)

If A and B are complex normed algebras then we shall denote by
A® B the completion of the algebraic "tensor product" A ®c B with
respect to some uniform C'T!ossnorm ([3]) which is compatible with
the multiplication (a ® b)(a' ® b') = (aa') ® (bb'). The space At ® Bt
can be naturally mapped into (A ® B}t: sometimes we have

(0.3)

An obvious example for (0.3) is when A and B are both Frechet spaces
and B is a nuclear space if a topological vector space ([10] Proposition
50.7) and hence, in particular, B is finite dimensional if a normed space.

Our first observation is elementary:
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LEMMA 1. Ha = (aI, a2,'" ,an) E An for a normed algebra A and
if A'" is the completion of A then

T~(a) = T~_(a) and TA(a) = TA_(a). (1.1 )

Proof. If A = (AI, A2,'" ,An) is not in T~(a) then there exists a
positive constant f > 0 for which

n

€llbll :S L II(aj - Aj)bll
j=l

for all bE A.

Since for each c EA"', there exists a sequence (cm) in A such that
Cm --+ C, it follows that

n n

fllclI = 2~ €IICmll :S2~L II(aj - Aj)cmll = L II(aj - Aj)clI,
j=l j=l

which says that Ais not in T~_ (a). This gives inclusion one way in the
first equality of (1.1). The reverse inclusion is evident. Exactly similar
argument gives the second equality of (1.1).

For tensor product of normed algebras, we have:

THEOREM 2. H A and B are normed algebras and if A 0 B is a
uniform tensor product of A and B satisfying At 0 Bt ~ (A 0 B)t,
then for arbitrary a E An and bE Bm there is equality

(2.1)

and
(2.2)

Proof. If (A,f.l) E' c n+m is not in T~(a) x TMa) then there exists
f > 0 for which either €IIXIl :S Ej'=l II(aj - Aj )xll for all x E A or
fllyll :S E;'=l II(bk-f.lk)YII for all y E B. Now suppose, for each sequence

("nr (r),Q, (r)) . A B
L..;=1 x; '<Y Y; rEN III 0 ,

n r

11((aj - Aj) 01) L x~r) 0 y~r)1I ..: 0
;=1

for each j
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and

so that
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n r

11(10 (bk - ILk)) L x~r) 0 yt)II": 0
i=l

for each k,

n r n r

11 L(aj - Aj)X~r) 0 y}r)II'-: 0 and IILx~r) 0 (bk - ILk)y~r)lI": o.
i=l i=l

By the assumption that the tensor product is uniform, the linear func­
tional

n n

4> 0 'l/J : L ai ® bi 1---+ L 4>(ai)'l/J(bi) for each 4> EAt and 'l/J E Bt
i=l i=l

i~-bounded~an(rexteD:ds-t6lhepro-ducf-jf 0B .Wefliiisnave;Ior-eacn--­
4> EAt and 'l/J E Bt,

n r nr

L <p((aj _,\j)x~r))'l/J(y~r)) ..: 0 and L <p(x~r))'l/J((bk - ILk)y~r)) ..: 0,
i=l i=l

so that

n r n r

<p{ (aj.-Aj) L x~r)'l/J(yt))} .-: 0 and 'l/J{ (bk-ILk) Ly~r) <p(x~r))} ..: 0,
~1 ~1

and hence

n r

(aj - Aj) L x~r)'l/J(y~r)) ..: 0 for each J
i=l

and
n r

(bk - ILk) Ly~r)<p(x~r)) ..: 0 for·each k.
i=l

Thus our assumption gives

n.r

either L x~r)'l/J(y~r)) ..: 0 or
i=l

n r

Ly}r)<p(x~r))": 0:
i=l
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Each case gives

n rI: 4>(x~r»)t/J(y}r»)~ 0 for each 4> E At and t/J E Bt,
i=l

and hence

From the assumption that At 12) Bt ~ (A 12) B)t, we can conclude

n rL x~r) 12) y}r) ~ 0,
i=l

which, by (1.1), says that (A, IJ) is not in f~@B(a 12) 1,112) b) because

elements of the form 1::=1 ai 12) bi form a dense subspace. This gives
inclusion one way in (2,1). The reverse inclusion was noticed by Ichi­
nose [8, Corollary 3.8]: Suppose A E f~(a) and IJ E fMb), so that there
are sequences (x r) and (Yr) in A and B for which Ilxrll = 1 = IIYrl1

. r

and lI(aj - Aj)xrll + lI(bk - IJk)Yrll - 0 for each j and k: but by the
crossnorm property for A 12) B

and

which says that (A,IJ) E f~@B(a 12) 1,112) b). This proves (2.1). The
argument for (2.2) is similar.

Theorem 2 gives us a spectral mapping theorem:
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THEOREM 3. Suppose that A and Bare normed algebras and that
A 0 B is a uniform tensor product of A and B satisfying At 0 Bt ~
(A0B)t. Ha E An is commutative and commutes with b E Bm and if
! : c n+m ~ CP is a p-tuple of polynomials in n + m variables then

r~(SB!(a01, 10 b) = f1!(f~(a), b)

and
r'A(SB!(a 01, 10 b) = f'B!(r'A(a), b).

Proof. From (0.2) and (2.1) we have

f~(SB!(a01,10 b)

U f;01=A(101)!(A(10 1),10 b)
AErl (a(Sl)

- U f~01=>.(Sd(10 A), 10 b)
AEl'~ (a)

U {I-L E cm : (A,I-L) E r'ea 01,!(10 A, 1 ® b))}
AEr~ (a)

- U {I-L E cm : (A,JL) E r~(a) X f1!(A, b)}
AEl'i (0:)

= {JL E Cm : I-L E f1!(A, b) for some A E f~(a)}

=r1!(r1(a), b),

which proves (3.1) and similarly (3.2).

(3.1)

(3.2)

Theorem 3 gives an expression for the approximate eigenvalues of
an "operator matrix". If C nn is the algebra of n x n complex matrices
we shall write

for the algebra of n x n matrices over the normed algebra A : All
the 'Uniform crossnorms give the same Cartesian product topology. If
x =, (Xij) E Ann is a commutative matrix (i.e., XijXi'j' = Xi'j'Xij
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for each i, j, iI, j') then we can define "determinant" exactly as in the
numerical case ([7]):

det(x)

::::: L {sgn(O")alO'(l)aZO'(Z)'" anu(n) : 0" E perm(l, 2,,·, ,n)} EA

together with the "cofacter" or "adjugate" matrix

where (-1) i+ j xij is the determinant of the submatrix of x obtained
by deleting the row and column containing the entry Xij. Evidently,
exactly as in the numerical case

adj( x)x ::::: det( x)1 ::::: xadj( x),

where 1 E Ann is the identity matrix. If y ::::: (Yij) E Ann is another
commuting matrix, whose entries commute with those of x, then we
also see

det(xy) ::::: det(x)det(y) E A.

It was known ([5], [6], [7], [9]) that if x ::::: (aij) E Ann is an n x n
commutative matrix over the normed algebra A then

(3.3)

For the approximate eigenvalues, we have an analog of (3.3):

THEOREM 4. If x ::::: (aij) E Ann is an n x n matrix over the
nonned algebra A with a commuting sequence of entries a::::: (al1,alZ,

... , al n ,'" , ann) E An
2

then

(4.1 )

and

(4.2)
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Proof. Writing B = C nn let b = (bll , b12 ,'" , bIn,'" , bnn ) E Bn
2

be the canonical basis for the vector space B. Thus x = (aij) E Ann
can be written as

n n

X = g(a, b) = L L aij ® bij E A ® B = Ann.
i=I j=I

Since evidently At ® Bt ~ (A ® B)t, we have, by Theorem 3,

ft,., (x) = ft"g(a, b) =f1®Bg(a ® 1,1 ® b)

=f1g(f~(a), b)

(4.3)

Since, for each .A E cn, g(.A, b) is an n X n complex matrix, it follows
from the determinant theory in the numerical case that

f1g(.A,b) = {JL E C: det (g(.A,b) - JL) = O}. (4.4)

If we now apply (O,l) with the polynomial f = det(g(z, b)- JL) .then
since f(a) = det(x - JL) we have

which gives (4.1) and sinlilarly (4.2).

We believe that Theorem 4 can also be deduced from an extended
version of [7, Theorem 2.2; 9, Lemma 1.1J.
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