Acknowledgement
Supported by : 한국과학재단
A personal computer based color machine vision system with video camera and fluorescent lighting system was used to generate images of stationary tobacco leaves. Image processing algorithms were developed to extract both the geometric and the color features of tobacco leaves. Geometric features include area, perimeter, centroid, roundness and complex ratio. Color calibration scheme was developed to convert measured pixel values to the standard color unit using both statistics and artificial neural network algorithm. Improved back propagation algorithm showed less sum of square errors than multiple linear regression. Color features provide not only quality evaluation quantities but the accurate color measurement. Those quality features would be useful in grading tobacco automatically. This system would also be useful in measuring visual features of other agricultural products.
Supported by : 한국과학재단