Synthesis and Characterization of Ni(Ⅱ) Complexes with Aminophosphine, Ni(L)X$_2$ and [Ni(L)$_2$]Cl$_2$ (L = L$_1$, L$_2$ ; X = Cl$^-$, Br$^-$, I$^-$)

Aminophosphine류 리간드가 배위된 Ni(Ⅱ) 착물, Ni(L)X$_2$ 및 [Ni(L)$_2$]Cl$_2$ (L = L$_1$, L$_2$ ; X = Cl$^-$, Br$^-$, I$^-$)의 합성과 성질

  • 정맹준 (영남대학교 화학과) ;
  • 박상규 (영남대학교 화학과) ;
  • 정민호 (구미전문대학섬유학과) ;
  • 김봉곤 (경상대학교 화학교육과) ;
  • 도명기 (영남대학교 이과대학 화학과 기초과학연구소)
  • Published : 19940400

Abstract

Several new nickel(II) complexes, [Ni(L)X$_2$ and [Ni(L)$_2$]Cl$_2$ (L = L$_1$, L$_2$ ; X = Cl$^-$, Br$^-$, I$^-$) have been synthesized by reacting NiX$_2$ or NiX$_2$, 6H$_2$O with aminophosphines(L) wherein L is 1,2-bis{(diphenylphosphino)amino}propane(L$_1$) or 1,2-bis{(diphenylphosphino)amino}ethane(L$_2$). These complexes are characterized by the optical spectroscopic methods (UV/Vis, CD, IR, $^1$H-NMR, and $^{31}$P-NMR) together with conductometer and elemental analysis. The complex with I$^-$ is tetrahedral, where the complexes with Cl$^-$ or Br$^-$ are square planar. The complexes, [Ni(L)X$_2$](X = Cl$^-$, Br$^-$) become tetrahedral, as they react with methyl iodide. The Ni(L)X$_2$ complexes underwent solvolysis with a various organic solvents such is EtOH, DMSO, THF and DMF.

1,2-bis{(diphenylphosphino)amino}propane(L$_1$) , 1,2-bis{(diphenylphosphino)amino}ethane(L$_2$)이 배위된 니켈(Ⅱ)착물, [Ni(L)X$_2$] 및 Ni(L$_2$)Cl$_2$(L = L$_1$, L$_2$ ; X = Cl$^-$, Br$^-$, I$^-$)을 합성하고 분광학적 성질을 조사하였다. X = Cl$^-$ 또는 Br$^-$인 경우에는 사각평면형 착물의 특성을 보였고, I$^-$는 사면체형 착물의 특성을 나타내었다. 합성된 Ni(L)X$_2$착물은 극성을 가진 유기용매(EtOH, DMSO, THF 및 DMF)를 반응시켰을 때 용매의 주개 수(donor number)값에 따라 가용매분해반응이 진행됨을 전자흡수스펙트럼으로 확인하였다.

Keywords

References

  1. J. Am. Chem. Soc. v.107 Strukul, G.;Michelin, R. A.
  2. J. Chem. Soc. Commun. Kanai, H.
  3. J. Am. Chem. Soc. v.89 Itatani, H.;Bailar, J. C.
  4. Inorg. Chem. v.30 Miedaner, A.;Haltiwanger, R. C.;DuBois, D. L.
  5. Inorg. Chem. v.32 Ljubica Manojlovic-Muir;Mirza, H. A.;Sadiq, N.;Puddephatt, R. J.
  6. Inorg. Chem. v.30 Jarrett, P. S.;Salder, P. J.
  7. J. Am. Chem. Soc. v.94 Tamao, K.;Sumitani, K.;Kumada, M.
  8. Comprehensive Organometallic Chemistry v.8 Willkinson, S. G.;Stone, F. G. A.;Abel, E. W.;Jolly, P. W.
  9. Comprehensive Organometallic Chemistry v.8 Willkinson, S. G.;Stone, F. G. A.;Abel, E. W.;Trost, B. M.;Verhoeven, T. R.
  10. J. Am. Chem. Soc. v.106 Hayashi, T.;Konishi, M.;Kobori, Y.;Kumada, M.;Higuchi, T.;Hirotsu, K.
  11. J. Am. Chem. Soc. v.109 Yamamoto, T.;Sano, K.;Yamamoto, A.
  12. Chem. Lett. v.1 Inoue, Y.;Taniguchi, M.;Hashimoto, H. Ohuchi, K.;Imaizumi, S.
  13. Helvetia Chemica Acta v.73 Camalli, M.;Caruso, F.;Chaloupke, S.;Leber, E. M.;Rimml, H.;Venanzi, L. M.
  14. J. Korean Chem. Soc. v.27 Doh, M. K.;Kim, B. G.
  15. Bull. Korean Chem. Soc. v.9 Doh, M. K.;Kim, B. G.
  16. The Manipulation of Air-sensitive Compounds Shriver, D. F.;Derzdzon, M. A.
  17. Purification of Laboratory Chemicals Perrin, D. D.;Armarego, W. L. F.
  18. Bull. Chem. Soc. Jpn. v.42 no.10 Ito, H.;Fujita, J.;Saito, K.
  19. Inorg. Chem. v.8 Mcauliffe, C. A.;Meek, D. W.
  20. Modern Coordination Chemistry Figgis, B. N.;Lewis, J.
  21. High Resolution Nuclear Magnetic Resonance Pople, J. A.;Schneider, W. G.;Bernstein, H. J.
  22. J. Chem. Phys. Frei, K.;Bernstein, H. J.
  23. J. Chem. Soc. Chem. Commun. Strukul, G.;Michelin, R. A.
  24. J. Chem. Edu. v.63 Hill, Z. D.;Carthy, P. M.
  25. Inorganica Chimica Acta Morassi, R.;Dei, A.
  26. Acc. Chem. Res. v.25 Canty, Allan J.
  27. Inorg. Chem. v.19 Davies, J. A.;Hertley, F. R.;Murray, S. G.
  28. Principles and Application of Organotransition Metal Chemisty Collman, J. P.;Hegedus, L. S.;Noton, J. R.;Finke, R. G.
  29. Organometallics Osakada, K.;Doh, M. K.;Ozawa, F.;Yamamoto, A.
  30. J. Am. Chem. Soc. v.102 Yamamoto, T.;Igarashi, K.;Komiya, S.;Yamamoto, A.
  31. Bull. Chem. Soc. Jpn. v.57 Sano, K.;Yamamoto, T.;Yamamoto, A.
  32. Bull. Chem. Soc. Jpn. v.53 Kanai, H.;Kushi, K.;Sakanoue, K.;Kishimoto, N.