Square-Wave Voltammetric Study of Uranium(Ⅵ)-Cupferron Complex

Uranium(Ⅵ)-Cupferron 착물의 네모파 전압전류법적 연구

  • 손세철 (한국원자력연구소) ;
  • 서무열 (한국원자력연구소 화학재료연구부 분석화학연구실) ;
  • 엄태윤 (한국원자력연구소) ;
  • 최인규 (한국원자력연구소 원자력화학연구팀)
  • Published : 19940300

Abstract

Square-wave voltammetric behavior for uranium(VI)-cupferron complex was studied in 0.1 M acetate buffer solution(pH5.0). The optimum condition for square-wave voltammetric analysis of uranium was also investigated. The reduction of uranium(VI)-cupferron complex was found to be irreversible and only uranium(VI)-cupferron complex was adsorbed on the electrode surface during the deposition time. Detection limit of uranium(VI) was 7.9nM(2 ppb) where the deposition time was 30sec at -0.1 V vs. Ag/AgCl. The amount of uranium(VI)-cupferron complex adsorbed on the electrode surface was ${\Gamma}_{max} = (4.9{\pm}0.3){\times}10^{-10} mol{\cdot}cm^{-2}$.

uranium(VI)-cupferron 착물에 대한 네모파 전압전류법적 연구를 pH5.0의 0.1M아세트산 완충용액에서 수행하였다. 네모파 전압전류법을 이용한 미량의 우라늄 정량과 분석시의 최적조건에 대해 검토하였다. Uranium(VI)-cupferron 착물의 환원반응은 반응물만이 전극 표면에 흡착되는 비가역적인 과정으로 진행되는 반응임을 알 수 있었다. Uranium(VI)의 검출한계는 -0.1 V vs. Ag/AgCl에서 흡착시간을 30sec로 하였을 때 7.9nM(2 ppb)이었으며, 전극 표면에 흡착된 uranium(VI)-cupferron착물의 양은 ${\Gamma}_{max} = (4.9{\pm}0.3){\times}10^{-10} mol{\cdot}cm^{-2}$이었다

Keywords

References

  1. Anal. Chim. Acta v.264 Pavon, J. P.;Pinto, C. G.;Garcia, E. R.;Cordero, B. M.
  2. Radioisotopes v.40 Kametani, K.;Matsumura, T.;Asada, M.
  3. Anal. Chim. Acta v.119 Holzbecher, J.;Ryan, D. E.
  4. Anal. Chem. v.60 Karr, A.;Kupterschmidt, W.;Attas, M.
  5. Microchim. Acta Szefer, R.
  6. Fresenius Z. Anal. Chem. v.292 Keil, R.
  7. Electroanalytical Chemistry v.16 Wang, J.;Bard, A. J.(ed.)
  8. Anal. Chim. Acta v.154 Lam, N. K.;Kalvoda, R.;Kopanica, M.
  9. Anal. Chem. v.59 Van den Berg, C. M. G.;Nimmo, M.
  10. Talanta v.34 Zhao, Z.;Cai, Z.;Li, P.
  11. Anal. Chim. Acta v.55 Berge, H.;Ringstorff, H.
  12. Anal. Chem. v.28 Elving, P. J.;Olson, E. C.
  13. Anal. Chim. Acta v.42 Donoso, G. N.;Santa Ana V, M. A.;Chadwick, I. W.
  14. Fenix Huaxue v.1 Xiao, S. S.
  15. Anal. Chem. Acta v.264 Wang, J.;Setiadji, R.
  16. Anal. Chem. v.53 O'Dea, J. J.;Osteryoung, J.;Osteryoung, R. A.
  17. Electroanalytical Chemistry v.14 Osteryoung, J.;O'Dea, J. J.;Brad, A. J.(ed.)
  18. J. Electroanal. Chem. v.226 Lovric, M.;Branica, M.
  19. J. Electroanal. Chem. v.248 Lovric, M.;Komorsky-Lovric, S.
  20. J. Electroanal. Chem. v.214 Ostapczuk, P.;Valenta, P.;Nurnberg, H. W.
  21. Anal. Chim. Acta v.260 Mlakar, M.
  22. Analyst v.118 Economou, A.;Fielden, P. R.
  23. Talanta v.40 Wandruszka, von R.;Yuan, X.;Morra, M. J.
  24. Anal. Chem. v.65 Turyan, I.;Mandler, D.
  25. Anal. Chim. Acta v.276 Mlakar, M.
  26. Ph. D. Thesis, Chungnam National Univ. Park, K. K.
  27. J. Anal. Chim. Acta v.251 Nuwer, M. J.;O'Dea, J. J.;Osteryoung
  28. J. Electroanal. Chem. v.345 O'Dea, J. J.;Rebes, A.;Osteryoung, J. G.
  29. Electrochim. Acta v.33 Lovric, M.;Komory-Lovric, S.;Murry, R. W.
  30. Statistics for Analytical Chemistry(2nd Ed.) Miller, J. C.;Miller, J. N.
  31. Talanta v.34 Wang, J.;Zadeii, J.