The Solubilization Site of Some Phenyl Alkanols in Aqueous Sodium Dodecylsulfate Micelle

몇가지 페닐 알카놀의 Sodium Dodeylsulfate 수용액 미셀내에서의 가용화 위치

  • Published : 19940300

Abstract

The solubilization sites of some phenyl alkanols such as phenol, benzyl alcohol, phenethyl alcohol, 3-phenyl-1-propanol solubilized in 0.2 M aqueous sodium dodecylsulfate micelle solution was studied by two dimensional heteronuclear correlation spectroscopy (2D C-H COSY). The results show more quantitative and clear solubilization sites in the SDS micelle than previous results using $^1H$-NMR spectrum integration. We found that most of the phenyl alkanols penetrate into the core of SDS micelle, and the insertion depth was 6.5∼7.0 methylene units from ${\alpha}$-methylene.

Sodium dodecylsulfate(SDS) 0.2M수용액 미셀내에 몇 가지 페닐 알카놀$[C_6H_5(CH_2)_nOH;$ 페놀(n=1), 벤질 알코올(n=1), 펜에틸 알코올(n=2), 3-페닐-1-프로판올(n=3)]이 가용화(solubilization)될 때 이들의 가용화 위치를 이차원 이핵 상관 NMR분광법(Two dimensional heteronuclear correlation spectroscopy (2D C-H COSY)으로 조사하였다. 실험 결과 $^1H$-NMR 신호의 적분에 의하여 조사한 이전의 연구결과보다 훨씬 정량적이며 정확한 가용화 위치를 알 수 있었다. 이들이 SDS 미셀 중심의 중간부 메틸렌기에 침투하는 깊이는 ${\alpha}$메틸렌기로부터 6.5~7.0 단위까지 임을 알았다.

Keywords

References

  1. Acta. Chem. Scand. v.17 Eriksson, J. C.
  2. Phys. Rev. v.80 Hahn, E.
  3. Ber. Bunsenges. Phys. Chem. v.67 McCall, D. W.;Douglass, D. C.;Anderson, E. W.
  4. J. Chem. Phys. v.42 Stejskal, E. O.;Tanner, J. E.
  5. J. Am. Chem. Soc. v.631 McBain, J. W.;Merrill, R. C.;Vinogard, J. R.
  6. J. Phys. Chem. v.66 Hamann, S. D.
  7. J. Phys. Chem. v.66 Tuddenham, R. F.;Alexander, A. E.
  8. Bull. Chem. Jpn. v.48 Tanaka, M.;Kaneshina, S.;Kuramoto, S.;Matuur, R.
  9. J. Chem. Soc. Donbrow, M.;Rhodes, C. T.
  10. J. Pharm. Pharmac. v.8 Mulley, B. A.;Metcalf, A. D.
  11. J. Pharm. Pharmac. v.18 Donbrow, M.;Rhodes, C. T.
  12. Acta. Chem. Scand. v.20 Eriksson, J. C.;Gillberg, G.
  13. J. Phys. Chem. v.75 Rehfeld, S. J.
  14. J. Am. Chem. Soc. v.68 Harkins, W. D.;Wmattoon, R.;Corren, M. L.
  15. J. Phys. Chem. v.72 Waggoner, A. S.;Keith, A. D.;Griffith, O. H.
  16. J. Am. Pham. Ass. Sci. Edn. v.47 Patel, N. K.;Kostenbauder, H. D.
  17. J. Colloid Interface. Sci. v.57 Azaz, E.;Donbrow, M.
  18. J. Phys. Chem. v.68 Herries, D. G.;Bishop, W.;Richards, F. M.
  19. J. Am. Chem. Soc v.95 Hautala, R. R.;Schore, N. E.;Turro, N. J.
  20. J. Am. Chem. Soc. v.95 Bunton, C. A.;Minch, M. J.;Hidalgo, J.;Spulveda, L.
  21. J. Am. Chem. Soc. v.96 Grafzel, M.;Kalyansundaram, K.;Thomas, J. K.
  22. J. Colloid Interface. Sci. v.78 Miyagishi, S.;Nishida, M.
  23. NMR of Newly Accessible Nuclei v.1 Lindinan, B.
  24. Bull. Korean Chem. Soc. Chung, J. J.;Kang, J. B.;Lee, K. H.
  25. Bull. Chem. Soc. Jpn. v.63 Takashi, H.;Yoshio, I.
  26. J. Magn. Res. v.42 Bax, A.;Morris, G.
  27. J. Phys. v.42 Cabane, B.
  28. J. Colloid Interface. Sci. v.75 Kratohvil, J. P.
  29. J. Colloid Interface. Sci. v.79 Backlund, S.;Rundt, K.;Birdi, K. S.;Dalager, S.
  30. J. Phys. Chem. v.75 Muller, N.;Platko, F. E.
  31. J. Phys. Chem. v.80 Persson, B. O.
  32. J. Phys. Chem. v.88 Stark, R. E.;Leff, R. D.;Milheim, S. G.;Kropf, A.
  33. J. Chem. Soc. Farad. 1 v.68 Fox, K. K.;Robb, I. D.;Smith, R.