Preparation of Cobalt-Substituted Iron Oxide Powder from Organometallic Precursors (Ⅱ)

유기금속 전구체로부터 코발트 치환 산화철 분말 제조 (Ⅱ)

  • 김정수 (동양화학공업(주) 중앙연구소) ;
  • 강한철 (동양화학공업(주) 중앙연구소) ;
  • 홍양기 (동양화학공업(주) 중앙연구소)
  • Published : 19940200

Abstract

Ultrafine cobalt-substituted iron oxide particles were prepared by the thermal decomposition and oxidation of the new organometallic precursor, $Co_xFe_{1-x}(N_2H_3COO)_2(N_2H_4)_2$ (x = 0, 0.01, 0.02, 0.03, 0.05, 0.10, 1.00). The organometallic precursors were synthesized by the reaction of Co(II) and Fe(II) ion in a mole ratio of x : 1-x with hydrazinocarboxylic acid, and characterized by quantitative analysis, elemental analysis and infrared spectroscopy. The mechanistic study on the thermal decomposition of the organometallic precursors was performed by TG-DTG and DSC. The cobalt-substituted iron oxide particles were obtained by the heat treatment of the precursors at $350^{\circ}C$ and $450^{\circ}C$ for six hours in air. The prepared iron oxide was found to have two phases such as ${\gamma}-Fe_2O_3$ and a mixture of ${\gamma}-Fe_2O_3\;and\;{\alpha}-Fe_2O_3$ at $350^{\circ}C$ and $450^{\circ}C$ respectively. The particle shape was equiaxial and the particle size was less than 0.05 ${\mu}m.$ The coercivity and squareness of the cobalt substituted iron oxide particles increased with increasing cobalt content. Both coercivity and squareness showed higher values at $450^{\circ}C.$

초미립 코발트 치환 산화철 분말을 새로운 유기금속 전구체인 $Co_xFe_{1-x}(N_2H_3COO)_2(N_2H_4)_2$ (x = 0, 0.01, 0.02, 0.03, 0.05, 0.10, 1.00)을 열분해화 산화과정으로 제조하였다.유기금속 전구체는 몰비 x : 1-x인 Co(II)와 Fe(II)를 hydrazinocarboxylic acid와 반응시켜서 합성하였고, 합성을 정량분석, 및 적외선분광기를 사용하며, 합성을 정량분석, 원소분석 및 적외선분광기를 사용하여 확인하였다. 유기금속 전구체의 열분해 과정은 TG-DTG 와 DSC로 살펴보았다. 코발트치환 산화철 분말은 유기금속 전구체를 대기 중에서 $350^{\circ}C$$450^{\circ}C$에서 6시간 열처리하여 제조하였다. 산화철의 결정상은 각각 ${\gamma}-Fe_2O_3$${\gamma}-Fe_2O_3$${\alpha}-Fe_2O_3$의 혼합상이었다. 입자의 형태는 구형에 가까운 모양이었고 크기는 $0.05{\mu}m$ 이하의 초미립이었다. 코발트 치환 산화철의 보자력과 각형비는 코발트 함량 또는 열처리 온도가 높아질 수록 증가하였다.

Keywords

References

  1. Ferrites Proceedings of the ICF3 Bate, G.;Iida, S.(ed.);Sugimoto, M.(ed.)
  2. IEEE Trans. Magn. v.MAG-15 no.6 Kubota, Y.;Morita, M.;Tokuoka, Y.;Imoka, Y.
  3. J. Mater. Sci. v.28 Kuo, P. C.;Chen, J. A.;Pan, C. W.
  4. IEE Trans. Magn. v.MAG-23 no.1 Eiling, A.
  5. Recording Materials in Ferromagnetic Materials v.1 Bate, G.;Wohlfarth, E. P.(ed.)
  6. FERRITES Proc. Inter. Conf., Sep-Oct Hayama, F.;Kitanoka, S.;Kishimoto, M.;Andoh, H.;Amemiya, M.
  7. IEEE Trans. Magn. v.MAG-17 no.5 Imoka, Y.;Umeki, S.;Kubota, Y.;Tokuoka, Y.
  8. Chem. Mater. v.2 Russel, C.
  9. J. Am. Ceram. Soc. v.75 Manoharan, S.;Patil, K. C.
  10. Bull. Korean Chem. Soc. v.13 Jeong, C. M.;Mun, S. H.;Kang, C. H.;Lee, C. E.;Yom, S. S.;Kim, K.
  11. IEEE Trans. Magn. v.MAG-24 no.2 Vallet, M;Obradors, X.;Bernet, M.;Rodriguez, J.;Medarde, M.
  12. J. Mater. Sci. v.23 Venkataraman, A.;Mukbedkar, A. J.
  13. Sol-Gel Science and Thecnology Mehrotra, R. C.;Aegerter, M. A.(ed.);Jaferlcci Jr, M.(ed.);Souza, D. F.(ed.);Zanotto, E. D.(ed.)
  14. Mater. Chem. Phys. v.9 Gajafathy, D.;Patil, K. C.
  15. J. Kor. Ceram. Soc. v.29 Kim, J. S.;Kang, H. C.;Hong, Y. K.
  16. Nature v.221 Braibanti, A.;Bigliardi, G.;Manotti Lanfredi, A. M.;Tiripicchio, A.
  17. Proc. Indian Acad. Sci. Chem. Sci. v.95 Ravindranathan, P.;Patil, K. C.
  18. Proc. Indian Acad. Sci. v.88A Patil, K. C.;Soundararajan, R.;Pai Verneker, V. R.
  19. Inorg. Chem. v.7 Braibanti, A.;Dallavalli, F.;Pellinghelli, M. A.;Leporati, E.
  20. Proc. ICF-5 Saresh, K.;Mahesh, G. V.;Patil, K. C.
  21. IEEE Trans. Magn. v.MAG-23 no.1 Podolsky, G.
  22. FERRITES Proc. Inter. Conf., Sep-Oct Monteil, J. B.;Dougier, P.