이미다졸의 양성자 친화도에 미치는 치환기 효과에 대한 이론적 연구

Theoretical Study for the Substituent Effect on Proton Affinity of Imidazoles

  • 이현미 (효성여자대학교 사범대학 화학교육과) ;
  • 이갑룡 (효성여자대학교 사범대학 화학교육과)
  • 발행 : 19940100

초록

이미다졸 고리를 포함하는 lexitropsin에서, DNA minor grooved의 염기쌍(G-C sequence)과 결합하는 부분인 치환이미다졸의 양성자 친화도를 확장분자궤도함수법으로 조사하였다. 그 결과 메틸이미다졸의 경우 염기중심 질소의 $\alpha$위치에 치환된 이미다졸이 N에 치환된 이미다졸보다 양성자 친화도가 약간 더 크게 나타났으며 다른 치환이미다졸의 경우에는 N에 치환된 이미다졸이 ${\alpha}$위치에 치환된 이미다졸보다 양성자 친화도가 더 크게 나타났다. 예상한 바와 같이 이미다졸의 N에 전자를 미는기가 치환될 때 모두 양성자 친화도가 증가함을 알 수 있었다.

The proton affinities of substituted imidazoles, relevant to the binding of lexitropsins that contain imidazole ring to the base pair (G-C sequence) of minor groove of DNA, are studied with the aid of EHT calculations. It is shown that proton affinity of imidazole substituted at position $\alpha$ to the basic nitrogen is slightly larger than that of imidazole substituted at N for the methylimidazole. Proton affinities of N-substituted imidazoles are found to be larger than those of imidazoles substituted at position ${\alpha}$ for a selected set of the other derivatives. As predicted the proton affinity increases when electron-donating group is attached at position N of imidazole.

키워드

참고문헌

  1. Computer-Aided Drug Design Perum, T. J.;Propst, C. L.(eds.)
  2. J. Biol. Chem. v.249 Wartell, R. W.;Larson, J. E.;Well, R. D.
  3. Prog. Nucleic Acid Res. Mol. Biol. v.15 Zimmer, C. H.
  4. Mol. Biol.(Kiev) v.9 Kolchinskii, A. M.(et al.)
  5. Proc. Natl. Acad. Sci. U.S.A. v.79 Patel, D. J.
  6. Stud. Biophys v.24 no.25 Reinert, K. E.;Thorson, H.
  7. Proc. Natl. Acad. Sci. U.S.A. v.82 Kopka, M. L.(et al.)
  8. Nucleic Acid Res. v.6 Zimmer, C.(et al.)
  9. Biochemistry v.25 Lown, J. W.(et al.)
  10. J. Am. Chem. Soc. v.100 no.17 Del Bene, J. E.;Cohen, I.
  11. J. Comput. Chem. v.12 no.9 Kabir, S.;Anne-Marie Sapse
  12. J. Am. Chem. Soc. v.109 Kahn, S. D.;Pau, C. F.;Chamberlin, A. R.;Hehre, W. J.
  13. J. Org. Chem. v.49 Catalan, J.(et al.)
  14. J. Chem. Soc., Perkin Trans. v.2 Catalan, J.;Yanez, M.
  15. J. Am. Chem. Soc. v.101 Catalan, J.(et al.)
  16. J. Chem. Soc., Perkin Trans. v.2 Catalan, J.(et al.)
  17. Org. React.(N. Y., Engl. Transl.) v.17 Koppel, I.(et al.)
  18. J. Am. Chem. Soc. v.99 Del Bene, J. E.
  19. Tetrahedron v.38 Catalan, J.(et al.)
  20. Tetrahedron v.39 Catalan, J.(et al.)
  21. J. Am. Chem. Soc. v.103 Hehre, W. J.(et al.)
  22. J. Mol. Struct. v.108 Catalan, J.(et al.)
  23. Quantitative Drug Design Martin, Y. C.
  24. Acta Crystallogr. v.20 Martinez-Carrera, S.
  25. Chem. Phys. v.39 Hoffmann, R.
  26. J. Chem. Phys. v.36;37 Hoffmann, R.;Lipscomb, W. N.
  27. J. Am. Chem. Soc. v.100 Ammeter, J. H.(et al.)
  28. QCPE v.11 Hoffmann, R.(et al.)
  29. J. Org. Chem. v.51 Meot-Ner(Mautner), M.;Liebman, J. F.;Del Bene, J. E.
  30. J. Am. Chem. Soc. v.112 no.4 Taft, R. W.(et al.)
  31. J. Phys. Chem. v.90 no.22 Mo, O.;De Paz, J. L. G.;Yanez, M.
  32. J. Am. Chem. Soc. v.103 no.11 Kollman, P. A.;Hayes, D. M.
  33. J. Am. Chem. Soc. v.110 Catalan, J.(et al.)
  34. A Pictorial Approach to Molecular Structure and Reactivity Hout, Jr., R. F.;Pietro, W. J.;Hehre, W. J.
  35. Prog. Phys. Org. Chem. v.14 Taft, R. W.
  36. J. Am. Chem. Soc. v.110 Moet-Ner(Mautner), M.
  37. J. Comput. Chem. v.5 Singh, U. C.;Kollman, P. A.
  38. J. Comput. Chem. v.9 Connolly, M. L.;Olson, G. A.
  39. New Methods in Drug Research v.2 Computer Graphics Applied to Molecular Modelling O'Donnell, T. J.;Chabalowski, C. F.;Makriyannis, A.(ed.);Prous, J. R.(ed.)
  40. Antibiotic III. Mechanism of Action of Antimicrobial and Antitumor Agents Hahn, F. E.;Corcoran, J. W.(ed.);Hahn, F. E.(ed.)
  41. Gazz. Chim. Ital. v.97 Arcamonen, F.(et al.)