The Effects of Tungsten Electrode on Electrochemical Synthesis of Polyaniline

텅스텐 전극이 폴리아닐린의 전기화학적 중합에 미치는 영향

  • Jung-Kyoon Chon (Department of Chemistry, Hankook University of Foreign Studies) ;
  • Byoung Hoon Min (Department of Chemistry, Hankook University of Foreign Studies)
  • 천정균 (한국외국어대학교 자연과학대학 화학과) ;
  • 민병훈 (한국외국어대학교 자연과학대학 화학과)
  • Published : 1994.12.20

Abstract

Kinetics of electrochemical polymerization of aniline on a tungsten electrode in acidic aqueous solution was studied by means of cyclic voltammetry and kinetic measurements of anodic oxidation. Aniline molecule appeared to be intially oxidized via two-electron transfer to produce oxidized deprotonated aniline ion, which subsequently undergoes nucleophilic attack to the parent aniline and results in head to tail coupling to yield a dimerized species. But, being contrary to the case of Pt electrode, the propagation of polymerization occured through attack of the monomer by the oxidized aniline monomer to polymer. The growth rate of polyaniline was slow in comparison with the growth on Pt electrode. The degradation products were confirmed to be not p-benzoquinone(BQ) but p-phenylenediamine(p-PDA) by spectrophotometry, which agrees with the fact that oxidation of p-PDA was not observed below 1.0 V.

텅스텐 전극을 작업전극으로 사용하여 산성수용액에서 아닐린의 전기화학적 중합을 순환 전압-전류법으로 연구하였다. 아닐린 분자는 2전자 전이에 의하여 탈수소 아닐린이온으로 산화하고, 중성아닐린을 공격하여 중합체를 만든다. 그러나 백금전극의 경우와는 다르게 중합과정은 주로 아닐린의 산화에 의해서 일어난다. 성장속도는 백금전극의 경우와 비교하여 느린 것으로 나타났다. 분해생성물은 벤조퀴논이 아니라 p-phenylenediamine(p-PDA)으로 확인 되었는데 이것은 1.0 V 이하의 전위에서 p-PDA의 산화가 관측되지 않은 결과와도 일치한다.

Keywords

References

  1. J. Electroanal. Chem. v.111 Diaz, A. F.;Logan, J. A.
  2. J. Electroanal. Chem. v.177 Kobayashi, T.;Yoneyama, H.;Tamura, H.
  3. J. Electroanal. Chem. v.195 Genies, E. M.;Tsintavis, C.
  4. J. Electroanal. Chem. v.209 Kitani, A.;Yano, J.;Sasaki, K.
  5. Synth. Metals v.18 MacDiarmid, A.;Yang, L. S.;Huang, W. S.;Humphry, B. D.
  6. J. Electrochem. Soc. v.135 Lacroix, J.-C.;Diaz, A. F.
  7. J. Electrochem. Soc. v.135 Stilwell, D. E.;Park, S.-M.
  8. J. Electrochem. Soc. v.35 Stilwell, D. E.;Park, S.-M.
  9. J. Electroanal. Chem. v.235 Zotti, G.;Carttarin, S.;Comisso, N.
  10. J. Electroanal. Chem. v.239 Zotti, G.;Carttarin, S.;Comisso, N.
  11. Electrochim. Acta v.34 Nunziante, P.;Pistoia, G.
  12. Bull. Korean Chem. Soc. v.9 Chon, J.-K.;Kim, J.-D.
  13. Bull. Korean Chem. Soc. Chon, J.-K.;Min, B.;Paik, W.
  14. 대한화학회지 v.37 천정균;민병훈
  15. Techniques of electroorganic synthesis part Ⅲ. Weinberg, N. L.;Tilak, B. V.;Sarangapani, S.;Weinberg, N. L.(Ed.);Tilak, B. V.(Ed.)
  16. Electrochim. Acta v.39 Horanyi, G.;Inzelt, G. Z.
  17. J. Am. Chem. Soc. v.109 Orata, D.;Buttry, D. A.