DOI QR코드

DOI QR Code

Kinetic Study on the Low-lying Excited States of Ga Atoms in Ar

  • Kuntack Lee (Department of Chemistry, Pohang University of Science and Technology, Pohang Kyungbuk) ;
  • Ju Seon Goo (Department of Chemistry, Pohang University of Science and Technology, Pohang Kyungbuk) ;
  • Ja Kang Ku (Department of Chemistry, Pohang University of Science and Technology, Pohang Kyungbuk)
  • Published : 1994.08.20

Abstract

Decay kinetics of Ga(5s), Ga(5p) and Ga(4d) atoms in Ar were studied by laser induced fluorescence technique. Theground state gallium atoms in the gas phase were generated by pulsed dc discharge of trimethyl gallium and argon mixtures. Both pulsed discharge and YAG-DYE laser system were controlled by a dual channel pulse generator and the delay time between the end of discharge and laser pulses was set 3.0-6.0 ms. The Ga(5s) and Ga(4d) atoms were generated by single photon excitation from the ground state Ga atoms and radiative lifetimes as well as the total quenching rate constants in Ar were obtained from the pressure dependence of the fluorescence decay rates. The Ga(5p) atoms were populated by a two-photon excitation method and the cascade fluorescence from Ga(5s) atoms were analyzed to extract quenching rate constant of Ga(5p) atoms by Ar in addition to radiative lifetimes of Ga(5p) state. The magnitudes of the quenching rate constants by Ar for the low-lying excited states of Ga atoms are 1.6-3$ {\times}10^{-11}cm^3$ molecul$e^{-1}s^{-1}$, which are much larger than those for alkali, alkaline earth and Group 12 metals. Based on the measured rate constants, kinetic simulations were done to assign state-to-state rate constants.

Keywords

References

  1. Chem. Phys. Lett. v.59 Karny, Z.;Naaman, R.;Zare, R. N.
  2. Chem. Phys. v.44 Duncan, M. A.;Dietz, T. G.;Smalley, R. E.
  3. Chem. Phys. Lett. v.74 Gerrity, D. P.;Rothberg, L. J.;Vaida, V.
  4. Chem. Phys. Lett. v.74 Engelking, P. C.
  5. Chem. Phys. Lett. v.74 Leutwyler, S.;Even, U.;Jortner, J.
  6. J. Phys. Chem. v.85
  7. J. Phys. Chem. v.86 Gedanken, A.;Robin, M. B.;Kuebler, N. A.
  8. J. Chem. Phys. v.79 Mitchell, S. A.;Hackett, P. A.
  9. Chem. Phys. Lett. v.107
  10. J. Chem. Phys. v.83 Mitchell, S. A.;Hackett, P. A.;Rayner, D. M.;Humphries, M. R.
  11. J. Phys. Chem. v.89 Mitchell, S. A.;Hackett, P. A.
  12. J. Chem. Phys. v.86 Mitchell, S. A.;Hackett, P. A.;Rayner, D. M.;Flood, M.
  13. SPIE v.50 Baughcum, S. L.;Oldenberg, R. C.;Winn, K. R.;Hof, D. E.
  14. SPIE v.669 Baughcum, S. L.;Oldenberg, R. C.
  15. Physik v.166 Demtroder, W. Z.
  16. Opt. Spectrosc. (U. S. S. R.) v.18 Penkin, N. P.;Shabanoba, L. N.
  17. Astrophys. J. v.141 Lawrence, G. M.;Link, J. K.;King, R. B.
  18. J. Opt. Soc. Amer. v.57 Cunningham, P. T.;Link, J. K.
  19. Phys. Rev. A v.3 Norton, M.;Gallagher, A.
  20. Phys. Rev. A v.5 Anderson, T.;Sorensen, G.
  21. Opt. Spectrosc. (U. S. S. R.) v.41 Erdevdi, N. M.;Shimon, L. L.
  22. J. Phys. B v.10 Gough, W.;Griffiths, S. B.
  23. J. Opt. Soc. Amer. v.67 Havey, M. D.;Balling, L. C.;Wright, J. J.
  24. Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U. S.) Reader, J.;Corliss, C. H.;Wiese, W. L.;Martin, G. A.
  25. Z. Phys. A v.301 Lindgard, A.;Mannervik, S.;Jelenkovic, B.;Veje, E.
  26. Z. Phys. D v.3 Carlsson, J.;Lundberg, H.;Peng, W. X.;Persson, A.;Wahlstrom, C. G.;Brage, T.;Fisher, C. F.
  27. Astron. Astrophys. v.164 Buurman, E. P.;Donszelmann, A.;Hansen, J. E.;Snoek, C.
  28. Astron. Astrophys. v.227 Buurman, E. P.;Donszelmann, A.
  29. Chem. Phys. Lett. v.216 Lee, K.;Goo, J. S.;Ku, J. K.
  30. Adv. Chem. Phys. v.50 Breckenridge, W. H.;Umemoto, H.
  31. Chem. Phys. Lett. v.209 Stangassinger, A.;Scheuchenpflug, J.;Prinz, T.;Bondybey, V. E.
  32. J. Phys. B (Atom. Molec. Phys.) v.2 Edward, M. G.
  33. Molecules and Radiation Steinfeld, J. I.