charge density of the metal ion for the formation of chelation III in the present system.

Acknowledgements. The authors are grateful for the financial supports from Korea Science and Engineering Foundation.

References

1. (a) Kraft, D.; Cacciapaglia, R.; Bohmer, V.; El-Fad], A.; Harkema, S.; Mandolini, L.; Reinhoudt, D. N.; Verboom, W.: Vogt. W. J. Org. Chem. 1992. 57, 826; (b) Ercolani, G.; Mandolini, L. J. Am. Chem. Sac. 1990, 112, 423.
2. Fersht, A. Enzyme Structure and Mechanism; 2nd Ed.; W. H. Freeman and Company, New York, Chapt. 12, 1985.
3. Suh, J. Acc. Chem. Res. 1992, 25, 273.
4. (a) Herschlag, D.; Jencks, W. P. J. Am. Chem. Soc. 1987, 109, 4665; (b) Breslow, R. Adv. Enzymol. 1986, 58, 1.
5. Suh, J.; Park, T. H.; Hwang, B. K. J. Am. Chem. Soc. 1992, 114, 5141.
6. (a) Buncel, E.; Dunn, E. J.; Bannard, R. A.; Purdon, J.
G. J. Chem. Soc., Chem. Commun. 1984, 162; (b) Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440.
7. Pregel, M. J.; Dunn, E. J.; Buncel, E. Can. J. Chem. 1990, 68, 1846.
8. Um, I. H.; Yong, J. L.; Kwon, D. S.; Ahn, B. T.; Lee, I. Tetrahedron Lett. 1992, 33, 6483.
9. Kwon, D. S.; Park, H. S.; Um, I. H. Bull. Korean Chem. Soc. 1991, 12, 93.
10. Suh, J.; Mun, B. S. J. Org. Chem. 1989, 54, 2009.
11. Um, I. H.; Lee, S. J.; Park, H. S.; Kwon, D. S. Bull. Korean Chem. Soc. 1994, 15, 161.
12. Vogel, A. I. Practical Organic Chemistry; Longman's Green and Co., London, England, 1962, 792.
13. (a) Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989. 111, 971; (b) Buncel, E.; Shaik, S. S.; Um, I. H.; Wolfe, S. J. Am. Chem. Soc. 1988, 110, 1275.
14. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405.
15. Kwon, D. S.; Lee, G. J.; Um, I. H. Bull. Korean Chem. Soc. 1990, 11, 262.

A Molecular Orbital Study of the Electronic Structure and the Ring Inversion Process in $\mathrm{Cp}_{2} \mathrm{TiS}_{3}$ Complex

Sung Kwon Kang* and Byeong Gak Ahn
Department of Chemistry. Chungnam National University, Taejon 305-764, Korea
Recived April 7. 1994

Abstract

Ab initio and extended Hückel calculations have been applied to discuss the electronic structure, ring inversion barrier, and geometry of the $\mathrm{C}_{2} \mathrm{TiS}_{3}$ compound. The deformation of four membered ring in the planar geometry is originated from a second-order Jahn-Teller distortion due to the small energy gap between HOMO and LUMO on the basis of extended Hückel calculations. The puckered C_{s} geometry is stabilized by the interaction of the $x^{2}-y^{2}$ metal orbital with the hybrid orbital in sulfur. $A b$ initio calculations have been carried out to explore the ring inversion process for the model $\mathrm{Cl}_{2} \mathrm{TiS}_{3}$ compound. We have optimized C_{s} and C_{2}. structures of the model compound at the RHF level. The energy barriers for the ring inversion are sensitive to the used basis set. With $4-31 \mathrm{G}^{*}$ for the Cl and S ligands, the barriers are computed to be $8.41 \mathrm{kcal} / \mathrm{mol}$ at MP2 and $8.02 \mathrm{kcal} / \mathrm{mol}$ at MP4 level.

Introduction

The factors that determine the ring size and chain lengths in elemental sulfur are poorly understood instead of intensive studies. ${ }^{1}$ The versatility of sulfur atoms as a ligand has been recently established in transition metal complexes. The trend of sulfur to form metal complexes is probably due to its intrinsic nucleophilic property and electron donor ability. A number of metallacyclosulfanes, MS_{x}, where $\boldsymbol{x}=2$ to 5 , have been prepared. ${ }^{2}$ The ring inversion barriers in these complexes have been measured by variable temperature NMR studies. The activation energy for the TiS_{5} ring inversion in $\mathrm{Cp}_{2} \mathrm{TiS}_{5}$ complex has been measured to be 16.5 $\mathrm{kcal} / \mathrm{mol}$ by Abel et al. ${ }^{3}$ and the electronic structure and potential energy surface for the process of the six-membered
ring have been studied by various methods including $a b$ initio calculations. ${ }^{4} \mathrm{C}_{2}{ }^{*} \mathrm{TiS}_{3}$ ($\mathrm{Cp}^{*}=$ pentamethylcylopentadienyl) complex has been reported to be its ground state geometry in a puckered four membered ring, and the angle a in 1 is $131^{\circ}{ }^{5}$ This complex has similar structure to the puckered

1
cyclobutane. The interesting feature is the energy barrier for the ring flipping from one side to the other. It has been measured to be $9.6 \mathrm{kcal} / \mathrm{mol}$ by NMR technique. ${ }^{5}$ This bar-

Figure 1. An orbital interaction diagram for $\mathrm{Cp}_{2} \mathrm{TiS}_{3}$ at a planar geometry
rier is unusually high when it is compared with that of cyclobutane of $1.5 \mathrm{kcal} / \mathrm{mol} .^{6}$ In this paper, we discuss the analysis of the electronic structure and ring inversion process in $\mathrm{Cp}_{2} \mathrm{TiS}_{3}$ complex. We calculate the potential energy surface for the ring flipping process of the four membered TiS_{3} unit at the semi-empirical extended Hückel ${ }^{7}$ and $a b$ initio levels.

Computational Methods

The $a b$ initio calculations were carried out with the GAUSSLAN 90^{8} and GAMESS ${ }^{9}$ packages. The basis set for Ti metal atom was of the form $(4333 / 433 / 31)$ and has been described elsewhere. ${ }^{10}$ Basically, it is of double- ξ quality for the metal d region. Standard $4-31 \mathrm{G}^{11}$ and $4-31 \mathrm{G}^{* 12}$ were used for chlorine and sulfur atoms. All geometries were optimized at the restricted Hartree-Fock (RHF) level by the energy gradient technique. Second- and fourth-order Moller-Plesset perturbation (MP2 and MP4) calculations were carried out at the RHF optimized geometries to obtain improved energy comparisons for the energy barrier.
The extended Hückel calculations with the modified Wolf-sberg-Heimholz formula ${ }^{13}$ were performed for the qualitative analysis. The parameters were taken from previous work. ${ }^{14.15}$ All Ti-S, S-S, Ti-C(Cp), and C-C distances were set at 2.41 , $2.03,2.39$, and $1.41 \AA$, respectively. The $\mathrm{S}-\mathrm{Ti}-\mathrm{S}$ and $\mathrm{Cp}-\mathrm{Ti}$ C_{p} angles were kept at 84.4° and 136.9°.

Results and Discussion

Extended Hückel Calculations on $\mathrm{Cpz}_{2} \mathrm{TiS}_{3}$. The ground state geometry of $\mathbf{1}$ is a puckered form. In order
to describe the details of this geometry, it is necessary to describe the bonding in a planar form 2 in which the angle α is 180.0°. This is divided into two fragments, $\mathrm{Cp}_{2} \mathrm{~T}^{-2+}$ and $\mathrm{S}_{3}{ }^{2-}$. The sulfur fragment 3 can be visualized as a diradical with two hybrid orbitals bearing the four electrons. The or-

2

3
bital interactioin diagram for the planar 2 is shown on Figure 1.

On the left side of figure are displayed the important valence orbitals of $\mathrm{Cp}_{2} \mathrm{Ti}^{2+}$ unit. This fragment has been extensively studied by several groups. ${ }^{15}$ We shall briefly describe the salient features of the analysis. The orbitals are labeled with $C_{2 t}$ symmetry and used the coordinate system shown on the top of Figure 1. The $1 a_{1}$ fragment orbital at the low energy level is predominantly $x^{2}-y^{2}$ metal d orbital pointed toward the vacant site by mixing of p y orbital. The b_{2} is mainly $x y$ metal orbital. The z^{2} metal orbital mixed with some metal $x^{2}-y^{2}$ and s characters is labeled $2 a_{1}$ and lies at somewhat higher energy level. The $2 a_{1}$ orbital is too high in energy to play an important role in interaction diagram. In $\mathrm{Cp}_{2} \mathrm{TiS}_{3}$, the Ti metal is formally d°. Therefore, $1 a_{1}, b_{2}$, and $2 a_{1}$ fragmental orbitals are empty as shown on the left side of Figure 1. The four orbitals of the $\mathrm{S}_{3}{ }^{2-}$ fragment are displayed on the right side of figure. There are two lone pair electrons (3) which are directed toward the metal fragment. Linear combinations produce two fragment orbitals of b_{2} and a_{1} symmetry. There are also two π type fragment orbitals, a_{2} and b_{1}. The b_{1} is an antisymmetric combination of p_{2} that is the highest occupied fragment orbital in $\mathrm{S}_{3}{ }^{2-}$ unit. The $1 a_{1}$ metal fragment orbital strongly interacts with the same symmetry orbital a_{1} on $\mathrm{S}_{3}{ }^{2-}$ unit to form bonding molecular orbital (MO) $1 A_{1}$ and antibonding MO $2 A_{1}$. The $2 A_{1}$ MO is a highest occupied MO (HOMO) in the planar $\mathrm{Cp}_{2} \mathrm{TiS}_{3}$ geometry and the component of this MO is 68% of the $1 a_{1}$ on metal and 20% of the a_{1} on sulfur fragment. Another strong interaction is formed between b_{2} orbitals on two fragments and it gives the stabilized B_{2} MO and antibonding MO which is not displayed in figure. The A_{2} MO comes from the a_{2} fragment orbital in sulfur unit slightly destabilized by $x z$ on the metal fragment not shown here. The b_{1} in sulfur unit is also slightly destabilized by $y z$ on the metal to produce LUMO, B_{1}. The component of LUMO is mainly sulfur fragment, 91% of the b_{1}. The HOMO and LUMO are represented by 4 and 5 , respectively.

HOMO
4

LUMO
5

Contour plots of HOMO and LUMO are displayed in Figure 2. This figure clearly shows that the HOMO has appreciable density between metal and S_{3} units in the antibonding

HOMO

LUMO

Figure 2. Contour plots of HOMO ($2 A_{1}$) and LUMO $\left(B_{1}\right)$ in the planar $\mathrm{C}_{\mathrm{p}_{2}} \mathrm{TiS}_{3}$ complex. The different phases of the wavefunction are represented by full and dashed lines. The orbitals were plotted in the $x y$ plane defined in Figure 1. The LUMO which possess a node in the $x y$ plane was plotted in this plane 1.0 in the z direction.
while the LUMO has large density in S_{3} unit. The LUMO is almost nonbonding sulfur p_{2} orbital.

The energy gap between HOMO and LUMO is pretty small as $4.2 \mathrm{kcal} / \mathrm{mol}$. This indicates a potential second-order Jahn-Teller distortion. ${ }^{15 b}$ The distortion will serve to mix the LUMO into HOMO, stabilizing the latter. One way to distort the geometry is lowering the point group from $C_{2 v}$ to C_{s}. That produces the same a^{\prime} symmetry for the HOMO and LUMO and mixed together. We have changed the angle α defined in 1 to make C_{s} point group. An orbital correlation diagram is shown on Figure 3 along with the energy profile as a function of the angle α.
When the angle α is deviated from 180.0°, the system becomes C_{s} symmetry which is the puckered geometry. Therefore, $2 A_{1}$ and B_{1} are now able to interact with $1 A_{1}$ with the identical a^{\prime} symmetry that is shown on Figure 3(a). The effect is to provide three MO's-4 electron pattern for the interaction. Thus, the HOMO in the puckered geometry is produced by the combination of two MO's as shown in 6.

6

As the α is decreased, some interaction is formed between $x^{2}-y^{2}$ metal orbital and the hybrid orbital on the center sulfur atom in S_{3} unit. The overlap population at $\alpha=130.0^{\circ}$ is calculated to be 0.1679 . Decreasing the α angle produces this stabilizing interaction and favors the puckered geometry. The $2 a^{\prime \prime}$ in Figure 3(a) is almost non-bonding MO and therefore not affected by the deformation of geometry. The $1 a^{\prime}$ holds the system by strong interaction between the radical type hybrid orbital on S_{3} unit and mainly $x^{2}-y^{2}$ metal orbital. The puckering of four membered ring affects this interaction. The overlap population between these orbitals decreases from 0.1371 to 0.0931 when the α angle is changed from 180.0° to 130.0°. At the planar geometry, the hybrid orbital on sul-

(a)

(b)

Figure 3. (a) Orbital correlation diagram for the distortion of $\mathrm{C}_{\mathrm{p}_{2}} \mathrm{TiS}_{3}$ complex from the $C_{2 p}$ to C_{s} geometries. (b) The energy profile as a function of the angle defined in 1.
fur unit stays in the $x y$ plane, whereas at the puckered geometry another orbital mixes in and hence the hybrids are tilted outward of the plane (7). It weakens the interaction with the $x^{2}-y^{2}$ metal orbital.

As described, decreasing the α makes $2 a^{\prime}$ to be stabilized and $1 a^{\prime}$ destabilized. The optimum angle is resulted to be

Table 1. Optimized Geometries of C_{3} and $C_{2 t} \mathrm{Cl}_{2} \mathrm{TiS}_{3}$ Complex at RHF Levels. ${ }^{\text {d }}$ Basis Sets are for Cl and S Atoms. The Bond Distances are in Angstroms and the Angles in Degrees

Basis	C_{3}		C_{2}		X-ray of
sets	$4-31 \mathrm{G}$	$4-31 \mathrm{G}^{*}$	$4-31 \mathrm{G}$	$4-31 \mathrm{G}^{*}$	$\mathrm{C}_{2} \mathrm{TiS}_{3}$
$\mathrm{Ti}-\mathrm{S}_{1}, \mathrm{~S}_{3}$	2.30	2.30	2.31	2.27	2.41
$\mathrm{Ti}_{2} \mathrm{~S}_{2}$	2.76	2.53	3.03	2.94	2.77
$\mathrm{~S}_{1}-\mathrm{S}_{2}$	2.32	2.12	2.33	2.14	2.04
$\mathrm{Ti}-\mathrm{Cl}$	2.23	2.21	2.23	2.20	
a	127.5	115.9	180.0	180.0	~ 131
θ	109.6	109.8	110.1	110.9	136.9
$\left\langle\mathrm{~S}_{1}-\mathrm{Ti}-\mathrm{S}_{3}\right.$	97.2	90.1	99.0	92.7	84.4
$\langle\mathrm{~S}-\mathrm{S}-\mathrm{S}$	97.0	100.4	97.9	100.0	

${ }^{s}$ The atom numbering scheme and parameters are defined in 8.

$\mathrm{C}_{3} \mathrm{Cl}_{2} \mathrm{TiS}_{3}$
$\mathrm{C}_{2 v} \mathrm{Cl}_{2} \mathrm{TiS}_{3}$

Figure 4. Optimized geometries of C, and $C_{z z} \mathrm{Cl}_{2} \mathrm{TiS}_{3}$.

145.0° on the energy profile as a function of the α in Figure 3 (b). The energy barrier for the four membered ring inversion is computed to be $10.4 \mathrm{kcal} / \mathrm{mol}$ that is pretty close to the experimental data of $9.6 \mathrm{kcal} / \mathrm{mol}$.
Ab initio Calculations on Model $\mathrm{Cl}_{2} \mathrm{TiS}_{3}$ Compound. Using Cl in place of Cp is a good model to reduce computational complexity. Upton and Rappe used CI ligand to replace Cp in a theoretical study of the isomerization of $\mathrm{Cp}_{2} \mathrm{TiC}_{3} \mathrm{H}_{6}$ to $\mathrm{Cp}_{2} \mathrm{TiCH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and they found that this model system gives a reasonable result. ${ }^{36}$ Also, several groups have used this kind of a simple model of Cl ligand to obtain good results in the quantitative calculations. ${ }^{17}$ The important optimized bond distances and angles for the C_{s} and $C_{2 r} \mathrm{Cl}_{2} \mathrm{TiS}_{3}$ are reported in Table 1 using the labeling shown in 8; the molecular structures are illustrated in Figure 4.

The optimized α angles in C_{s} structure of Table 1 are 127.5° and 115.9° for 4-31G and 4-31G* basis sets, respectively. These values are consistent with the trend obtained

Table 2. The Energy Differencess between C_{s} and $C_{2 k}$ Geometries of $\mathrm{Cl}_{2} \mathrm{TiS}_{3}$. The Energies are Listed in $\mathrm{kcal} / \mathrm{mol}$

	$4-31 \mathrm{G}$	$4-31 \mathrm{G}^{*}$
RHF	0.97	4.22
MP2	3.09	8.41
MP4	3.41	8.02
Exp.		9.6

${ }^{a}$ The total energies of C_{s} at $4-31 G^{*}$ are -2957.09079 hartrees at RHF level, -2957.88306 hartrees at MP2 level, and -2958. 03574 hartrees at MP4 level.

8
in X-ray structure determination where the structure of four membered ring is puckered. ${ }^{5}$ The optimized α angles are smaller than the experimentally observed one of 131° due to the less bulky Cl in place of Cp ligand. Generally, the 4-31G* basis set calculation reveals shorter bond distances than those of $4-31 \mathrm{G}$. This is general trend at the basis set with polarization function. ${ }^{18}$ The energy differences between the puckered C_{s} and the planar C_{20} geometries are listed up to MP4 level in Table 2.
With the 4-31G basis set, the energy barrier of ring inversion in $\mathrm{Cl}_{2} \mathrm{TiS}_{3}$ is computed to be $0.97 \mathrm{kcal} / \mathrm{mol}$ at the RHF level. Electron correlation effects increase it to $3.09 \mathrm{kcal} / \mathrm{mol}$ (MP2 level) or $3.41 \mathrm{kcal} / \mathrm{mol}$ (MP4 level). These barriers are far from the experimental measurement of $9,6 \mathrm{kcal} / \mathrm{mol}$. We found out that the energy barrier is pretty sensitive to the basis set used. As given in Table 2, the puckered C_{s} geometry is computed to be $4.22 \mathrm{kcal} / \mathrm{mol}$ more stable than the planar $C_{2 s}$ at the RHF level with the polarization function $4-31 G^{*}$ basis set. It is also increased by electron correlation effects to $8.41 \mathrm{kcal} / \mathrm{mol}$ and $8.02 \mathrm{kcal} / \mathrm{mol}$ at MP2 and MP4 levels, respectively. We notice that the energy barrier is not much affected by the electron correlation beyond second-order Moller-Plesset perturbation theory. The full $a b$ initio studies of $\mathrm{C}_{p_{2}} \mathrm{TiS}_{3}$ and its isoelectronic molecules will be forthcoming.

Conclusions

We have discussed the detailed computational studies of the electronic structure and ring inversion process in $\mathrm{Cp}_{2} \mathrm{TiS}_{3}$ compound at both the semi-empirical EHT and $a b$ initio levels. The HOMO and LUMO in the planar geometry of $\mathrm{Cp}_{2} \mathrm{TiS}_{3}$ are very close in energy enough to deform the structure in terms of the 2nd order Jahn-Teller distortion. The puckered C_{s} form maximizes the stabilization to increase the interaction between the $x^{2}-y^{2}$ metal orbital and the hybrid orbital in sulfur. At the ab initio studies on the model compound, the optimized geometries are not much different in $4-31 \mathrm{G}$ and $4-31 G^{*}$ basis sets. The RHF optimizations give good st-
ructural accuracy. However, the relative energy is sensitive to the basis set. Our study indicates that the $4.31 \mathrm{G}^{*}$ basis set is much better to calculate the energy barrier of the ring inversion in the model $\mathrm{Cl}_{2} \mathrm{TiS}_{3}$ compound. The electron correlation effect at MP2 level plays an important role to reproduce the energy barrier.
Acknowledgements. This research was supported by the Korean Science and Engineering Foundation. We thank Systems Engineering Research Institute for providing the opportunity of using the Cray Y-MP computer.

References

1. (a) Quelch, G. E.; Schaefer, H. F.; Marsden, C. J. J. Am. Chem. Soc. 1990, 112, 8719; (b) Barker, M. G. Coor. Chem. Rev. 1990, 103, 162; (c) Dixon, D.; Wasserman, E. J. Phys. Chem. 1990, 94, 5772; (d), Dubois, P.; Lelieur, J. P.; Lepoutre, G. Inorg. Chem. 1987, 26, 1897: (e) Laitinen, R. S.; Randolph, B.; Pakkanen, T. A. J. Comput. Chem. 1987, 8, 658; (f) Schmidt, M. Angew. Chem. Int. Ed. Engl. 1973, 12, 445.
2. (a) O'Neal, S. C.; Pennington, W. T.; Kolis, J. W. Organometalics, 1989, 8, 2281; (b) Bernanda, R. M. H.; Cusick, J.; Scudder, M. L.; Craig, D. N.; Dance, I. G. Polyhedron 1989, 8, 1999; (c) Tatsumi, K.; Inoue. Y.; Kawaguchi, H.; Kohsaka, M.; Nakamura, A.; Cramer, R. E.; VanDoorne, W.; Taogoshi, G. J.; Richmann. P. N. Organometallics, 1993, 12, 352; (d) Shaver, A.; McCall. J. M.; Day, V. W.; Vollmer, S. Can. J. Chem. 1987, 65, 1676; (e) Draganjac, M.; Rauchfuss, T. B. Angev. Chem. Int. Ed. Engl. 1985. 24, 742; (f) Briant, C. E.; Calhorda, M. J.; Hor, T. S. A.; Howells, N. D.; Mingos, D. M. P. J. Chem. Soc. Datton Trans. 1983, 1325; (g) Epstein, E. F.; Bernal, I.; Köpf, H. J. Organomet. Chem. 1971, 26, 229; (h) David, B. R.; Bernal, I. J. Cryst. Mol. Struct. 1972, 2, 315.
3. Abel, E. W.; Booth, M.; Orrell, K. G. J. Organomet. Chem. 1978, $160,75$.
4. (a) Lawless, M. S.; Marynick, D. S. Inorg. Chem. 1991, 30, 3547; (b) Bruce, A. E.; Bruce, M. R. M.; Tyler, D. R. J. Am. Chem. Soc. 1984, 106, 6660; (c) Petersen, J. L.; Lichtenberger, D. L.; Fenske, R. F.; Dahl, L. F. J. Am. Chem. Soc. 1975, 97, 6433.
5. Bird, P. H.; McCall, J. M.; Shaver, A.;' Siriwardane, U.

Angew. Chem. Int. Ed. Engl. 1982, 21, 384.
6. (a) Stone, J. M. R.; Mills, I. M. Mol. Phys. 1970, 18, 631; (b) Miller, F. A.; Capwell, R. J. Spectrochim. Acta. 1971, 27a, 947.
7. Hoffmann, R. J. Chem. Phys. 1963, 39, 1397; Hoffmann, R.; Lipscomb, W. N. ibid. 1962, 36, 2197; 1962, 37, 2872.
8. Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegel, H. B.: Raghavachari, K.; Robb, M. A.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; saeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A. Gaussian 90, Gaussian, Inc., Pittsburgh, PA.
9. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koeski, S.; Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Elbert, S. T. QCPE Bull. 1990, 10, 52.
10. Kang, S. K.; Albright, T. A.; Eisenstein, P. Inorg. Chem. 1989, 28, 1611.
11. Ditchfield, R.; Hehre, W.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
12. (a) Dunning. T. H.: Hay, P. J. Methods of Electronic Structure Theory; Schaefer, H. F. Ed.; Plenum, New York, 1977; (b) Poirer, R.; Kari, R.; Csizmadia, I. G. Handbook of Gaussian Basis Sets; Elsevier, Amsterdam, 1985.
13. Ammeter, J. H.; Bürgi, H. B.; Thibeault, J. C.: Hoffmann, R. J. Am. Chem. Soc. 1978. 100, 3686.
14. Chen, M. M. L.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1647.
15. (a) Lauher, J. W.; Hoffman, R. J. Am. Chem. Sac. 1976, 98, 1729; (b) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interaction in Chemistry; Wiley: New York, 1985; (c) Ahn, B. G.; Kang, S. K.; Yun, S. S. J. Korean Chem. Soc. 1994, 38, 55.
16. Upton, T. H.; Rappe, A. K.: J. Am. Chem. Soc. 1985, 107, 1206.
17. (a) Koga, N.; Morokurna, K. J. Am. Chem. Soc. 1988, I10, 108; (b) Kawamura-Kuribayashi, H.; Koga, N.; Morokurna, K. J. Am. Chem. Soc. 1992, 114, 2359; (c) Gleiter, R.; Hyla-Kryspin, I.; Niu, S.; Erker, G. Organometallics, 1993, 12, 3828.
18. Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theony; Wiley: New York, 1986.

