Abstract
The approximate rates and stoichiometry of reaction of excess dipyrrolinoaluminum hydride (DPAH) with selected organic compounds containing representative functional groups under standardized conditions (tetrahydrofuran, 0, reagent : compound=4 : 1) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of DPAH was also compared with that of bis(diethylamino)aluminum hydride (BEAH). The reagent appears to be stronger than BEAH, but weaker than the parent reagent in reducing strength. DPAH shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, acid chlorides, epoxides, and nitriles readily. In addition to that, ${\alpha},\;{\beta}$-unsaturated aldehyde is reduced to the saturated alcohol. Quinone are reduced cleanly to the corresponding 1,4-reduction products. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Both primary and tertiary aromatic carboxamides are converted to aldehydes with a limiting amount of DPAH. Finally, disulfides and sulfoxides are readily reduced to thiols and sulfides, respectively.