Abstract
The frameworks of $(Cu(NH_3)_3OH^+)_x(NH_4^+)_{12-x}-A{\cdot} zH_2O$ which were prepared by the ion-exchange of zeolite A with ammoniac cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution. An energetic calculation was made on the relatively stable $(CuOH^+)_2(NH_4^+)_{10}-A{\cdot} 2H_2O$ prepared by the partial evacuation of $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$. The mean stabilization energies of water, OH-, and $NH_4^+$ ions are -30.23 kcal/mol, -60.24 kcal/mol, and -16.65 kcal/mol, respectively. The results of calculation were discussed in terms of framework stability. The $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$ zeolite shows two step deammoniation reactions. The first deammoniation around 210 $^{\circ}$C (third DSC peak) was attributed to the decomposition of $[Cu(NH_3)_3OH^+]$ ion and the second one around 380 $^{\circ}$C (fourth DSC peak) was ascribed to the decomposition of $NH_4^+$ ion. The activation energies of the first and second deammoniation reactions were 99.75 kJ/mol and 176.57 kJ/mol, respectively.