DOI QR코드

DOI QR Code

A Study of the Structure and Thermal Property of $Cu^{2+}\;and\;NH_{4}{^+}$ Ion-Exchanged Zeolite A

  • Park, Jong-Yul (Department of Chemistry, Pusan National University) ;
  • Kang, Mi-Sook (Department of Chemistry, Pusan National University) ;
  • Choi, Sang-Gu (Yang San Junior College) ;
  • Kim, Yang (Department of Chemistry, Pusan National University) ;
  • Kim, Un-Sik (Department of Chemistry, Pusan National University)
  • Published : 1994.05.20

Abstract

The frameworks of $(Cu(NH_3)_3OH^+)_x(NH_4^+)_{12-x}-A{\cdot} zH_2O$ which were prepared by the ion-exchange of zeolite A with ammoniac cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution. An energetic calculation was made on the relatively stable $(CuOH^+)_2(NH_4^+)_{10}-A{\cdot} 2H_2O$ prepared by the partial evacuation of $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$. The mean stabilization energies of water, OH-, and $NH_4^+$ ions are -30.23 kcal/mol, -60.24 kcal/mol, and -16.65 kcal/mol, respectively. The results of calculation were discussed in terms of framework stability. The $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$ zeolite shows two step deammoniation reactions. The first deammoniation around 210 $^{\circ}$C (third DSC peak) was attributed to the decomposition of $[Cu(NH_3)_3OH^+]$ ion and the second one around 380 $^{\circ}$C (fourth DSC peak) was ascribed to the decomposition of $NH_4^+$ ion. The activation energies of the first and second deammoniation reactions were 99.75 kJ/mol and 176.57 kJ/mol, respectively.

Keywords

References

  1. Zeolite Molecular Sieves Breck, D.W.
  2. Zeolite Molecular Sieves Breck, D.W.
  3. Acc. Chem. Res. v.9 Seff. K.
  4. J. Phys. Chem. v.86 Lee, H. S.;Cruz, W. V.;Seff, K.
  5. ACS Symposium Series No. 135 Adsorption and Ion Exchange with Synthetic Zeolites Kim, Y.;Subramauian, V.;Firror, R. L.;Seff, K.
  6. Bull. Korean Chem. Soc. v.12 Park, J. Y.
  7. Adv. Chem. Series v.101 Flanigen, E. M.;Khtami, H.;Szymanski, H. A.
  8. J. Phys. Chem. v.89 Dutta, P. K.;Barco, B. D.
  9. J. Phys. Chem. v.93 Schoonheydt, R. A.;Vaesen, L.;Leeman, H.
  10. J. Phys. Chem. v.93 Janssen, R. G.;Tizink, A. H.;Veeman, W. S.;Maesen, Th. L. M.;Van Lent, J. F.
  11. J. Phys. Chem. v.90 No, K. T.;Bae, D. H.;Jhon, M. S.
  12. J. Phys. Chem. v.91 No. K. T.;Kim, J. S.;Huh, Y. Y.;Kim, W. K.;Jhon, M. S.
  13. Zeolites v.9 Akporiaye, D. E.;Price, G. D.
  14. J. Phys. Chem. v.84 Mortier, W. J.
  15. J. Mol. Catal. v.10 Beran, S. J.
  16. J. Phys. Chem. v.89 Datka, J.;Greelings, P.;Mortier, W.;Jacobs, P.
  17. A. E. R. E. Report, R7125 Fortran subroutines for minimization by Quasi-Newton methods Fletcher, R.
  18. Acta Cryst. v.B28 Ahmed, N. A.;Kitaigorodskii, A. I.
  19. Third Revision of ORNL-3794 Oak Ridge Thermal-Ellipsoid Plot Program for Crystal Structure(ORTEP) Johnson, C. K.
  20. Inorg. Chem. v.18 Herman, R.
  21. J. Am. Chem. Soc. v.103 Mcusker, L. B.;Seff, K.
  22. J. Korean Chem. Soc. v.33 Park, J. Y.;Kim, Y.;Kim, U. S.;Choi, S. G.
  23. J. Phys. Chem. v.90 Heo, N. H.;Cruz-Pataiinghug, W.;Seff, K.
  24. The Hydrolysis of Cations Baes, Jr. C. F.;Mesmer, R. E.
  25. J. Therm. Anal. v.7 Ozawa, T.