DOI QR코드

DOI QR Code

Determination of the Kinetic Energy Release Originating from the Reverse Critical Energy in Unimolecular ion Dissociation

  • Yeh, In-Chul (Department of Chemistry and Research Institute of Molecular Sciences Seoul National University) ;
  • Lee, Tae-Geol (Department of Chemistry and Research Institute of Molecular Sciences Seoul National University) ;
  • Kim, Myung-Soo (Department of Chemistry and Research Institute of Molecular Sciences Seoul National University)
  • Published : 1994.03.20

Abstract

A method has been developed to estimate the kinetic energy release originating from the reverse critical energy in unimolecular ion dissociation. Contribution from the excess energy was estimated by RRKM theory, the statistical adiabatic model and the modified phase space calculation. This was subtracted from the experimental kinetic energy release distribution (KERD) via deconvolution. The present method has been applied to the KERDs in $H_2$, loss from $C_6H_6^+$ and HF loss from ${CH_2CF_2}^+$. In the present formalism, not only the energy in the reaction coordinate but also the energy in some transitional vibrational degrees of freedom at the transition state is thought to contribute to the experimental kinetic energy release. Details of the methods for treating the transitional modes are found not to be critical to the final outcome. For a reaction with small excess energy and large reverse critical energy. KERD is shown to be mainly governed by the reverse critical energy.

Keywords

References

  1. J. Phys. Chem. v.95 Aruman, E.;Wategaonkar, S. J.;Setser, D. W.
  2. Chem. Phys. v.52 Zamir, E.;Levine, R. D.
  3. Advan. Chem. Phys. v.70 Wardlaw, D. M.;Marcus, R. A.
  4. Chem. Phys. Lett. v.144 Marcus, R. A.
  5. J. Am. Chem. Soc. v.98 Chesnavich, W. J.;Bowers, M. T.
  6. J. Chem. Phys. v.66 Chesnavich, W. J.;Bowers, M. T.
  7. J. Am. Chem. Soc. v.99 Chesnavich, W. J.;Bowers, M. T.
  8. Prog. React. Kinet. v.11 Chesnavich, W. J.;Bowers, M. T.
  9. J. Phys. Chem. v.89 Malinovich, Y.;Arakawa, R.;Haase, G.;Lifshitz, C.
  10. Int. J. Mass Spectrom. Ion Processes v.58 Jarrold, M. F.;Wagner-Redeker, W.;Illies, A. J.;Kirchner, N. J.;Bowers, M. T.
  11. J. Phys. Chem. v.92 Bunn, T. L.;Bowers, M. T.
  12. J. Phys. Chem. v.94 Snodgrass, J. T.;Dunbar, R. C.;Bowers, M. T.
  13. Metastable Ions Cooks, R. G.;Beynon, J. H.;Caprioli, R. M.;Lester, G. R.
  14. Fundamental Aspects of Organic Mass Spectrometry Levsen, K.
  15. J. Chem. Phys. v.62 Marcus, R. A.
  16. J. Chem. Phys. v.67 Worry, G.;Marcus, R. A.
  17. J. Chem. Phys. v.56 Parson, J. M.;Lee, Y. T.
  18. Chem. Phys. Lett. v.207 Yeh, I. C.;Kim, Y. H.;Kim, M. S.
  19. J. Phys. Chem. v.92 Sloan, J. J.
  20. Rapid Commun. Mass Spectrom. v.6 Yeh, I. C.;Kim, M. S.
  21. Rapid Commun. Mass Spectrom. v.6 Yeh, I. C.;Kim, M. S.
  22. Rapid Commun. Mass Spectrom. v.5 Kim, Y. H.;Kim, M. S.
  23. The Fast Fourier Transform and Its Applications Brigham, E. O.
  24. Unimolecular Reactions Robinson, P. J.;Holbrook, K. A.
  25. Theory of Unimolecular Reactions Forst, W.
  26. J. Phys. Chem. v.83 Chesnavich, W. J.;Bowers, M. T.
  27. Z. Naturforsch. v.28a Reinke, D.;Kraessig, R.;Baumgartel, H.
  28. J. Phys. Chem. Ref. Data v.17 no.SUP. 1 Lias, S. G.;Bartmess, J. E.;Liebman, J. F.;Holmes, J. L.;Levin R. D.;Mallard, W. G.
  29. J. Am. Chem. Soc. v.103 Traeger, J. C.;McLoughlin, R. G.
  30. J. Phys. Chem. v.90 Grice, M. E.;Song, K.;Chesnavich, W. J.
  31. J. Chem. Phys. v.18 Smith, D. C.;Nielsen, J. R.;Claassen, H. H.
  32. J. Chem. Phys. v.34 Hunt, G. R.;Wilson, M. K.
  33. Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecule Herzberg, G.
  34. J. Mol. Spectrosc. v.87 Lafferty, W. J.;Sattler, J. P.;Worchesky, T. L.;Ritter, K. J.
  35. Naturforsch v.34a Jones, H.;Rudolph, H. D. Z.
  36. Molecular Theory of Gases and Liquids Hirschfelder, J. O.;Curtiss, C. F.;Bird, R. B.