DOI QR코드

DOI QR Code

An Investigation of the Environment of Some Aromatic Alcohol Solubilized Aqueous Ionic Micellar Solutions by Proton Magnetic Resonance Spectroscopy

  • Published : 1994.03.20

Abstract

Chemical shifts in aqueous sodium dodecylsulfate(SDS) micellar solution solublizing phenol, catechol, resorcinol, hydroquinone have been measured to investigate solubilization properties. Proton nuclear magnetic resonance frequencies of solubilizates as well as those of the ${\alpha}$-methylene, middle methylene and terminal methyl of SDS shift linearly as a function of solubilizate concentration. From the plots of observed chemical shift (v) vs solubilizate concentration, slope (a) and solubilizate free chemical shift ($v_0$) are obtained. They are very informative to solubilization site of the systems. Catechol and phenol solubilized SDS and catechol solubilized dodecylpyridinium chloride(DPC), dodecyltrimethylammonium bromide(DTAB) systems are studied using the same method to compare head group effect and middle methylene proton signal splitting. It is proposed that phenol and catechol are inserted into micellar interior and the number of methylenes assigned to the higher field peaks is 5.0${\pm}$0.5.

Keywords

References

  1. Acta. Chem. Scand. v.17 Eriksson, J. C.
  2. Acta. Chem. Scand. v.20 Eriksson, J. C.;Gillberg, G.
  3. J. Phys. Chem. v.91 Rao, U. R. K.;Manohar, C.;Valaulikar, B. S.;Iyer, R. M.
  4. Solubilization and Related Phenomena McBain M. E. L.;Hutchinson, E.
  5. Micellization, Solubilization, and Microemulsion v.1 Mittal K. L.;Mukerjee, P.
  6. J. Phys. Chem. v.68 Venable, R. L.;Nauman, R. V.
  7. Ind. Eng. Chem. v.38 McBain, J. W.;Richards, P. H.
  8. Chem. Rev. v.47 Klevens, H. B.
  9. Solubilization by Surface Active Agents Elworthy, P. H.;Florence, A. T.;Macfarlane, C. B.
  10. J. Am. Oil Chemists' Soc. v.35 Harris, J. C.
  11. J. Amer. Chem. Soc. v.95 Bunton, C. A.;Minch, M. J.;Midalgo, J.;Sepulveda, L.
  12. J. Amer. Chem. Soc. v.96 Gratzel, M.;Kalynasundaram, K.;Thoma, J. K.
  13. J. Amer. Chem. Soc. v.97 Fendler, J. H.;Fendler, E. J.;Infante, G. A.;Shih, P. S.;Patterson, L. K.
  14. J. Colloid Interface Sci. v.65 Ulmius, J.;Lindman, B.;Lindblom, G.;Drakerbert, T.
  15. Advan. Phys. Org. Chem. v.8 Fendler, E. J.;Fendler, J. H.
  16. Surface Chem. v.148 Eriksson, J. C.;Gillberg. G.
  17. J. Phys. Chem. v.76 Fendler, E. J.;Day, C. L.;Fendler, J. H.
  18. J. Phys. Chem. v.74 Gordon, J. E.;Robertson, J. C.;Thorne, R. L.
  19. Catalysis in micellar and macromolecular system Fendler, J. H.;Fendler, E. J.
  20. J. Phys. Chem. v.71 Muller, N.;Brikhann, R. H.
  21. J. Polym. Sci. Liu, K. J.
  22. Polymer v.10 Liu, K. J.
  23. J. Colloid Interface Sci. v.78 Miyagishi, S.;Nishida, M.
  24. J. Colloid Interface Sci. v.78 Miyagishi, S.;Nishida, M.
  25. Bull. Chem. Soc. Jpn. v.63 Takashi, H.;Yoshio, I.

Cited by

  1. Adsolubilization of dihydroxybenzenes into CTAB layers on silica particles vol.315, pp.2, 1994, https://doi.org/10.1016/j.jcis.2007.06.078
  2. Study on the interaction between dihydroxybenzenes and DTAB by ultramicroelectrode voltammetry vol.322, pp.1, 2008, https://doi.org/10.1016/j.colsurfa.2008.03.013