DOI QR코드

DOI QR Code

Study of Corrosion of Brass Coated Steel Cords in the Acetonitrile Solution of Sulfenamide Derivatives by Tafel Plot and AC Impedance Measurements

  • Young Chun Ko (Department of Chemistry, Chonnam National University) ;
  • Byung Ho Park (Kumho R & D Center) ;
  • Hae Jin Kim (Department of Environmental Engineering, Donshin University) ;
  • Q Won Choi (Department of Chemistry, Seoul National University) ;
  • Jongbaik Ree (Department of Chemistry Education, Chonnam National University) ;
  • Keun Ho Chung (Department of Chemistry Education, Chonnam National University)
  • Published : 1994.02.20

Abstract

Corrosion of brass coated steel cords in the acetonitrile solution of sulfenamide derivatives, N-Cyclohexylbenzothiazole-2-sulfenamide (CBTS), N,N'-Dicyclohexylbenzothiazole-2-sulfenamide (DCBS), N-tert-Butylbenzothiazole-2-sulfenamide (TBBS), N-tert-Amylbenzothiazole-2-sulfenamide (TABS), and N-Oxydiethylbenzothiazole-2-sulfenamide (OBTS) was investigated by potentiostatic anodic and cathodic polarization (Tafel plot), DC polarization resistance, and AC impedance measurements. The corrosion current densities and rates are 1.236 ${\mu}A /cm^2$ and 0.655 MPY for CBTS; 1.881 ${\mu}A/cm^2$ and 0.988 MPY for DCBS; 2.367 ${\mu}A/cm^2$ and 1.257 MPY for TBBS; 3.398 ${\mu}A /cm^2$ and 1.809 MPY for TABS, respectively. OBTS among derivatives under study shows the lowest corrosion density (0.546 ${\mu}A /cm^2$) and the slowest corrosion rate (0.288 MPY). Also, the charge transfer resistances and the double layer capacitances are 275.21 $k{\Omega}{\cdot}cm^2$ and 7.0 ${\mu}F{cdot}cm^{-2}$ for CBTS; 14.24 ${\mu}F{\cdot}cm^2$ and 26 ${\mu}F{\cdot}cm^{-2}$ for DCBS; 54.15 $k{\Omega}{\cdot}cm^2$ and 26 ${\mu}F{\cdot}cm^{-2}$ for TBBS; 0.96$k{\Omega}{\cdot}cm^2$ and 83 ${\mu}F{\cdot}cm^{-2}$ for TABS, respectively. The weaker the electron donating inductive effect of derivatives is and the smaller the effect of steric hindrance is, the more the corrosion of brass coated steel cords in the acetonitrile solution of sulfenamide derivatives is prevented. The above results agree with that observed in the field of tire industry.

Keywords

References

  1. Met. Fin. v.83 Altmayer, F.
  2. J. Etectrochem. Soc. v.139 Schueller, G. R. T.;Taylor, S. R.
  3. J. Electrochem. Soc. v.137 Dobbelaar, J. A. L.;de Wit, J. H. W.
  4. Corrosion v.48 Milosev, I.;Metikoss-Hukovic, M.
  5. J. Electrochem. Soc. v.139 Sekine, I.;Sangbongi, M.;Hagiuda, H.;Oshibe, T.;Yuasa, M.;Imahama, T.;Shibata, Y.;Wake, T.
  6. J. Electrochem. Soc. v.130 Bonnel, A.;Dabosi, F.;Deslouis, C.;Duprat, M.;Keddam, M.;Tribollet, B.
  7. Corrosion v.48 Hedayat, A.;Postlethwaite, J.: Yannacopoulos, S.
  8. J. Electrochem. Soc. v.134 Kelly, R. G.;Moran, P. J.
  9. J. Electrochem. Soc. v.139 Downey, S. B.;Devereux, O. F.
  10. Surf. Sci. v.68 Van Ooij, W. J. V.
  11. Rubber Chem. Technol. v.59 Ishikawa, Y.;Kawakami, S.
  12. Corrosion v.31 Natarajan, R.;Angelo, P.;Gerge, N.;Tamhankar, R.
  13. Corrosion v.33 Walker, G. D.
  14. U.S. Patent 19286 Zaucker, E.;Bogemann, M.
  15. Corrosion v.48 Rajagopal, V.;Iwasaki, I.
  16. EG & G PARC Application Note 148
  17. Corrosion v.48 Murray, J. N.;Hack, H. P.
  18. J. Electrochem. Soc. v.139 Sekine, I.;Kohara, K.;Sugiyama, T.;Yuasa, M.
  19. NACE v.44 Thompson, N. G.;Lawson, K. M.;Beavers, J. A.