Abstract
Digital simulation program for one-dimensional geometric systems of electrochemical phenomena was developed. The accuracy of the digital simulation is discussed by comparing with the known solutions. Applying this program to the linear sweep voltammetry at a planar electrode for the electrode reaction, 0 + ne${\to}$R, the accurate current functions for the reversible and totally irreversible charge transfer systems were obtained. Comparing these current functions with the simulated voltammograms for various other values of ${\alpha}$ (0.1 to 1.0) and ${\Lambda}\;(10^{-5}\;to\;10^5)$, the revised zones that are different from those proposed by Matsuda and Ayabe for the reversible and totally irreversible systems are proposed. For ${\alpha}{\ge}$0.1 the reversible zone is in ${\Lambda}{\ge}10^{1.7}$ and the totally irreversible zone is in ${\Lambda}{\le}10^{-1.7}$, where ${\Lambda}=k^{\circ}/ [D_o^{1-{\alpha}}D_R^{\alpha}(nF/RT)v]^{1/2}$.