DOI QR코드

DOI QR Code

Effect of Mn-addition on Catalytic Activity of $Mn/In_2O_3$ in Methane Activation

  • Published : 1994.12.20

Abstract

Mn/In$_2O_3$ systems with a variety of Mn mol${\%}$ were prepared to investigate the effect of Mn-addition on the catalytic activity of Mn/In$_2O_3$ in the oxidative coupling of methane. The oxidative coupling of methane was examined on pure In$_2O_3$ and Mn/In$_2O_3$ catalysts by cofeeding gaseous methane and oxygen under atmospheric pressure between 650 and 830 $^{\circ}C$. Although pure In$_2O_3$ showed no C$_2$ selectivity, both the C$_2$ yield and the C$_2$ selectivity were increased by Mn-doping. The 5.1 mol${\%}$ Mn-doped In$_2O_3$ catalyst showed the best C$_2$ yield of 2.6${\%}$ with a selectivity of 19.1${\%}$. The electrical conductivities of pure and Mn-doped In$_2O_3$ systems were measured in the temperature range of 25 to 100 $^{\circ}C$ at PO$_2$'S of 1 ${\times}$ 10$^{-7}$ to 1 ${\times}$ 10 $^{-1}$ atm. The electrical conductivities were decreased with increasing Mn mol${\%}$ and PO$_2$, indicating the specimens to be n-type semiconductors. Electrons serve as the carriers and manganese can act as an electron acceptor in the specimens. Manganese ions doped in In$_2O_3$ inhibit the ionization of neutral interstitial indium or the transfer of lattice indium to interstitial sites and increase the formation of oxygen vacancy, giving rise to the increase of the concentration of active oxygen ion on the surface. It is suggested that the active oxygen species adsorbed on oxygen vacancies are responsible for the activation of methane.

Keywords

References

  1. J. Catal. v.73 Keller, G. E.;Bhasin, M. M.
  2. J. Catal. v.117 Carreiro, J. A. S. P.;Baerns, M.
  3. J. Chem. Soc. Faraday Trans.Ⅰ v.82 Matsuda, T.;Minami, Z.;Shibalta, Y.;Nagano, S.;Mirura, H.;Suguyama, K.
  4. J. Discuss. Faraday Soc. v.41 Ambigues, P.;Techner, S.
  5. J. Electrochem. Soc. v.133 Schmacher, L. C.;Afara, S. M.;Dignam, M. J.
  6. J. Appl. Phys. v.52 Laser, D.
  7. Int. J. Chem. Kinet. v.19 no.1 Lee, S. H.;Heo, G.;Kim, K. H.;Choi, J. S.
  8. J. Chem. Soc. Faraday Trans.Ⅰ v.78 Otsuka, K.;Yasui, T.;Morikawa, A.
  9. Bull. Soc. Chim. Fr. v.1 Brenet, J.
  10. Semiconductor Measurements and Instrumentation Runyan, W. R.
  11. J. Elect. Spect. Rela. Phenom. v.7 Oku, M.;Hirokawa, K.;Ikeda, S.
  12. J. Phys. Chem. Solids v.50 Barr, T. L.;Liu, Y. L.
  13. J. Phys. Chem. Solids v.38 De Wit, J. H. W.;Unen, V.;Lahey, M.
  14. J. Electrochem. Soc. v.128 McCan, J. F.;Bockris, J. O. M.
  15. J. Am. Chem. Soc. v.111 Li, C.;Domen, K.;Maruya, K.;Onishi, T.
  16. J. Phys. Chem. v.96 Li, O.;Xin, Q.
  17. Acc. Chem. Res. v.14 Haber, J.;Witko, M.
  18. J. Am. Chem. Soc. v.109 Lin, C.-H.;Ito, T.;Wang, J.-X.;Lunsford, J. H.
  19. J. Am. Chem. Soc. v.107 Driscoll, D. J.;Martir, W.;Wang, J.-X.;Lunsford, J. H.
  20. J. Catal. v.119 Lane, G. S.;Miro, E.;Wolf, E. E.
  21. J. Phys. Chem. v.95 Brove, K. J.;Petterson, L. G. M.
  22. J. Chem. Soc. Faraday Trans. v.86 Burch, R.;Chalker, S.;Sqire, G. D.;Tsang, S. C.