Effect of Osmopriming on Rice Seed Germination in Low Temperature

Eun Seon Kyeong* · Jin Key Kim* and Dong Yun Hyun**

ABSTRACT: To improve the germination performance of rice seeds under suboptimal temperature, osmopriming with PEG-6000 was examined. Optimal PEG-6000 concentration to improve germination was 20% PEG-6000 solution, and rice cultivars used in this experiment were Sinumbongbyeo, Gancheokbyeo, Dongjinsbyeo. The water content of seeds after soaking for 60 hours in the PEG solution is similar to that of seeds after soaking for 24 hours in the distilled water. Germination performance of the soaked seeds in the PEG solution was higher than that of the soaked seeds in the distilled water or the control, especially under suboptimal temperatures. Electrical conductivity of the soaked seeds in the PEG solution was lower than that of the soaked seeds in the distilled water or the control, and total dehydrogenase activity of the soaked seeds in the PEG solution was higher than that of the soaked seeds in the distilled water or the control. SDS-PAGE results of soluble protein from the embryos of seeds primed differently showed darker bands in the seeds soaked in the PEG solution than the seeds soaked in the distilled water or the control at the 68 KD region. Also, band patterns of peroxidase and esterase of embryos soaked in the PEG solution were darker than that of embryos soaked in the distilled water or the control at the Rf 0.94 and Rf 0.87, respectively.

Key word: Osmopriming, Electrical conductivity, Dehydrogenase activity, SDS-PAGE, Peroxidase, Esterase

저온에서 종자방아와 幼苗出現은 높이기 위해 그동안 여러가지 방법의 種子 處理가 있었다. 그 대표적인 방법으로는 種子硬leri, 염수중침지, 포화 상태습도의 공기 중 흡습, PEG 용액에서 흡습 등이 있는데, 이중 특히 PEG는 毒性이 없으며 종자에 처리한 幼植物의 활력이 증진 되고 황probe가 용이하다고 알려져 있다. 또한 과종 진 종자에 PEG를 처리하면 잎아는 데 걸리는 시간을 약당기고 방아의 均一性과 生産量을 늘리며, 저온이나 염수 중에 耐性이 있 다고 보고되고 있다. 지금까지의 많은 보고에 의하면 PEG 처리에 의

* 㤗北大學校 棉科大學(College of Agriculture, Chonbuk National University, Chonju 560-750, Korea)
** 湖南作物試驗場(Honam Crop Experiment Station, Iri 570-080, Korea)
한 발아율의 증진은 발아대사의 촉진과 세포막의 회복에 연결되어 설명되고34,7,23, 처리효과는 침지 후 종자를 건조시키지 않는다면 단순히 수분흡수의 3단계 중 2단계인 흡수정기간의 감소에 그 원인 이 있다고 한다.

PEG를 통한 발아력 증진의 생리적인 근거는 종자의 부분적인 수분흡수와 세포막적 및 전체적인 수분흡수를 통하여 종자로부터 침출을 막으면서 세포막의 회복을 증진시킨다고33,34,7,23, 한다. 한편 PEG 처리효과는 작물에 따라 달라서 비교적 소립 체소나 화합증간에서는 처리효과가 있었으나33,34,7,23, 오이나 멜론종간에서는 그 효과를 보지 못했다.

최근 시야의 일반화로 바직파혜택에 대한 관심이 높아지고 있는데 바직파계외 과정에 온도가 낮을수록 발아도가 빨라지고 임계온이 낮아서 급격히 빨라 emerge에 어려움이 있는데, 도의 초기신생은 저온 발아성과 임계가관관계가 있다34,7,23, 하고하였다.

본 실험은 과정 전 벼씨종간에 PEG를 처리할 경우 저온 발아가 미치는 정도를 알아보고 PEG 처리에 의한 저온 발아성의 생리화학적 원인 규명에 접근하고자 실시하였다.

조건 및 방법

공시 벼씨종간의 효율적시험장에서 92년산 신حن룽병(조종종), 갈싸벽(중종종), 동 сли벽(중종종)을 분양받았다. 종자처리는 증류수에 침시시켜 20±1℃의 항온기에서 24시간 두거나 (DW-24), 반응포도단인 polyethylene glycol ([HO-CH₂CH₂ (OCH₃CH₂)₃- OH]) 6000을 증류수에 용해시켜 20%의 농도로 만든 다음 20±1℃의 항온기에서 60시간 침시(PEG-60) 시험 후 증류수로 갈끔이 난 다음 25±1℃의 항온기에서 24시간 건조시킨 후 실험재료로 사용하였다.

1. 수분율

처리한 종자의 수분항 법 측정은 증류수와 PEG 용액에 각각 24, 60시간 침시한 후 겪내어 종자 표면에 남은 수분을 제거한 다음의 100으로의 80℃의 dry oven에 48시간 건조시킨 후의 乾燥重을 측정한 다음의 100으로의 백분율로 나타내었다.

2. 발아율 (Germination percentage: GP), 평균발아율 (Mean germination time: MGT), 발아속도 차수, PI 지수 (Promptness index: PI)

처리가 끝난 각 종자들 지름이 9cm인 발아속도에 어괴지(Toyo No. 2) 2장을 간고 처리등 50법칙 3천절로 치사하여 각각 10, 14, 18±1℃의 항온기에서 두어 24시간 간격적으로 발아된 수를 조사하여 7일 후 총 발아된 수를 합산하였다.

평균발아시간과 발아속도지수는 각각 Edward (1934), Timson (1965)의 식에 따랐다.

평균발아시간 (MGT) = \[\frac{\sum (t_i \cdot n_i)}{\sum n_i} \]

발아속도지수 (PI) = \[\frac{\sum [n_i \cdot (T + 1 - t)]}{\sum n_i} \]

t_i : 침시 후 조사일수, n_i : 조사 당일의 발아수, T : 총 조사일수

3. 電気導通度 및 脫水素酵素 活性

지름이 2cm인 시험관에 증류수 25ml을 채운 다음 각 침시 종자를 5%의 3천절으로 25±1℃에서 24시간 침시키고 다음 그 용액의 전기진도도를 electrodeconductivity meter (Corning 220)로 측정하였다.

탈수효소 활성은 처리한 각 종자 중 염을 제거한 종자 10ml을 1% TTC (2, 3, 5-triphenyl tetrazolium chloride) 용액에 24시간 침시, 발시시간 후 5ml 2-methoxylethanol로 봉은색의 formazan을 추출하여 spectro-photometer로 520nm에서 흡광도를 측정하였다.

4. SDS-PAGE 電気泳泳

시료는 처리가 끝난 종자 중 30개를 골라 영을 제거한 다음 배출조심스럽게 분리하였다. 분리한 배는 추출 緩衝液 (25mM HEPES, 4mM DTT, 1mM Na₂-EDTA, 1% PVP) 2ml를 넣고 유방에 충분히 마쇄하여 4℃에서 50분간 13,000rpm으로 빈심분리한 다음 그 上澄液 1ml를 취해서 -40
응의 결합을 하지 않도록 하기 위해 0.5ml sample buffer(25ml Tris-SDS stock, 2g SDS, 10ml Glycerol, 5ml 2-Mercaptoethanol, 1% 0.1ml Bromophenol blue)를 용액에 넣고 놓는 데 2분간 담구어 단백질을 완전히 분해하였다.

Polyacrylamide gel 전기영동은 선형과 slab gel 전기영동 장치를 이용하였으며 discontinuous buffer system에 따라 resolving gel buffer는 Tris-HCl(pH 8.8)을, stacking gel buffer는 Tris-HCl(pH 6.8)을 사용하였고 electrode buffer는 Tris-glycine(pH 8.3)을 사용하였다. 표준 단백질은 Sigma사 제품인 Dalton Mark VII-L™을 사용하였으며, 전류는 bromophenol blue 가 stacking gel을 통과할 때까지는 20mA, resolving gel을 지날 때는 40mA을 각각 통용하게 하였다. 동은 Coomassie blue R 250으로 하였고, 실내에 적응시킨 후 동은 LKB 전기영동법에 따라했다.

5. Peroxidase와 esterase의 isozyme

抽出緩衝液은 중류가 0.5ml를 사용하였고, gel은 SDS가 없는 polyacrylamide slab gel을 사용하였으며, 코랙스스 튜브의 전압은 300volt을 유지하면서 2시간 30분동안 전기영동시켰다. 전기영동 후 염색은 다음과 같이 하였다.

Peroxidase

0 3-amino-9-ethylcarbazole	100mg
0 Na-acetate buffer(1M, pH 5.0)	20ml
0 Dimethyl formamide	5ml
0 Calcium chloride(0.1M)	4ml
0 H2O2 (3%)	1ml
0 H2O	140ml

Esterase

0 α-naphthyl acetate(1.5%)	1ml
0 Phosphate buffer(0.2M, pH 7)	100ml
0 Fast Blue RR salt	10ml

Table 1. Effects of PEG-6000 concentration on rice seed germination

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>PEG-6000 concentration(g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0(24)</td>
</tr>
<tr>
<td>Sinunbongbyeo</td>
<td>80.0</td>
</tr>
<tr>
<td>Ganchoekbyeo</td>
<td>84.0</td>
</tr>
<tr>
<td>Dongjinbyeo</td>
<td>91.3</td>
</tr>
</tbody>
</table>

() : imbibition time in hour

Table 2. Water contents of primed seeds of three rice cultivars

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Water content(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinunbongbyeo</td>
</tr>
<tr>
<td>Control</td>
<td>11.20</td>
</tr>
<tr>
<td>DW24</td>
<td>13.50</td>
</tr>
<tr>
<td>PEG-60</td>
<td>13.53</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.24</td>
</tr>
</tbody>
</table>

증진을 위한 최적 PEG-6000의 농도는 각기 다르게 나타났다(15). 벌써종자에서 최고의 발아율을 얻기 위한 최적 PEG-6000의 농도를 알기 위해 PEG 용액을 10, 20, 30%의 농도로 조절하여 발아율을 조 사한 결과 표 1에서와 같은 결과를 얻을 수 있었다.

표 1에서 보는 3가지 품종중에서 농도적으로 20% PEG 농도에서 비교적 높은 발아율을 보였으며 10%의 농도에서는 PEG 처리효과가 거의 없었고, 30%의 농도에서는 오히려 발아율이 떨어지는 경향을 보였다. 따라서 본 실험에서 벌써종자의 발아율 증진을 위한 최적 PEG 농도는 20%에 종자를 처리하였다.

한편, Huang(15)에 의하면 밀꿀의 증분량에 PEG의 처리효과는 PEG 농도뿐만 아니라 PEG 용액에 점지할 때의 침착도와 점지 후 탈수시간, 탈수시간에 따라서 처리효과에 차이를 보인다고 하였는데, 벌써종자에서는 침착시간에 따라서 처리 효과에 차이가 있을 뿐 기타 요인에 의해서는 큰 영향을 받지 않는 것 같았다.

결과 및 캐사

기존의 연구결과에 의하면 각 작물 종자의 활성

1. 분가량

일반적으로 종자를 삽입 후 간절체인 PEG 용액에 침지시켰을 경우 종자는 수분을 서서히 흡수하기
Fig. 1. Effects of priming treatment on germination percentage (GP) of three rice cultivars in suboptimal temperatures. Each indication above bars was LSD0.05. A, B, and C stand for Sinunbongbyeo, Gancheokbyeo, Dongjinbyeo, respectively.

때문에 단순히 증류수에 침지시켰을 때보다 일정 함량의 수분을 흡수하는데 더 많은 시간이 소요되었다. 표 2와 같이 3가지 품종에서 약간의 품종간 차이는 있지만 공통적으로 증류수에 24시간 침지시켰을 때와 PEG 용액에 60시간 침지시켰을 때의 수분함량이 거의 비슷함을 확인할 수 있었다.

2. 발아율 (GP), 평균발아시간 (MGT), 발아속도지수 (PI)

그림 1에서 발아 적응보다 럽은 10℃, 14℃ 및 18℃의 온도에서 발아율을 보면 3품종 모두 PEG 처리효과가 공통적으로 나타났는데 온도에 따라서 그 차이 정도가 약간 다름을 볼 수 있었다. 즉, 18℃에서는 그 차이가 거의 보이지 않았으며 14℃에서는 품종간에 약간의 차이를 보였지만 전체적으로는 처리효과를 인정할 수 있었으며, 10℃에서는 PEG 처리효과를 더욱 현저히 볼 수 있었다. 품 종간에 있어서는 조생종인 신온봉버가 간적비나 동진비에 비해 다 차이가 있었다. 이 품종간의 차이는 수분흡수에 있어서 조생종인 신온봉버가 간 적비나 동진비에 비해 약간 늦어지는 경향이 있는 데 여기에 원인이 있지 않은가 생각된다.

표 3의 평균발아시간 (MGT)과 발아속도지수 (PI)에서도 그림 1의 발아율 (GP)과 같은 경향을 보여 PEG 용액에 60시간 침지한 종자의 MGT는 증류수에 24시간 침지한 종자나 대조군의 MGT에 비해 그 값이 적게 나타났으며 온도가 낮아질수록 처리간의 차이 정도가 더욱 크게 나타났다. PI도 마찬가지로 온도가 낮아질수록 처리간에 그 증가 폭이 더욱 컸다.
3. 전기전도도 및 탈수소효소 활성

일반적으로 priming 처리는 종자가 성숙 후 건조에 의해 세포막이 손상된 것을 치유시키고 priming 처리동안 종자는 정상적인 상태로 되돌아 가게 한다. 본 실험의 결과는 PEG로 삼투처리한 종자로부터 침출물의 양이 단순히 물로 처리한 것이나 무처리에 비해 적을을 나타내고 있다(표 4 참조). 이렇게 감소된 전기저항의 약은 정확히 설명하기는 어려우나 PEG 용액에 60시간 침지하는 동안 종자내 전해질의 상당량이 이미 종자 밖으로 흘러간 것으로 생각될 수도 있지만, 한편으로는 몇몇 보고서에서 같이 삼투처리하는 동안 종자의 세포막 구조가 더 뻣뻣하게 침출된 전해질의 양이 적어졌다고도 생각할 수 있다.

또한 종자 전체의 총 탈수소효소 활성은 종자의 활성을 대비하는 밀집한 각지의 장치인데, 표 4에서 보 면 3가지 종중에서 공동으로 PEG 용액에 처리한 종자에서 탈수소효소 활성이 높게 나타나 처리 효과를 인정할 수 있었다.

4. SDS-PAGE 전기장동

삼투처리 후 변조종자의 배에 있는 가용 단백질 함량을 알기위해 배 부분만을 분리하여 전기장동하여 본 결과 그림 2와 같은 band를 볼 수 있었다. 3가지 종중에서 band가 분명하게 나타나었음에 의한 band가 나타난 것으로 추정된다. Sung의 결과와 같이 변조종자에서 삼투처리한 배를 분리하여 전기장동하여 본 결과 band의 3부분에서 새로운 band를 관찰하였는데 본 실험의 변조종자에서 새 band를 볼 수 없어 이와는 다른 결과를 얻었다.

이와 같은 결과에서 생각해 볼 수 있는 것은 변조종자에서 삼투처리의 효과가 옥수수종자보다는 적지 않았다는가 하는 생각이 들고, 변조종자를 삼투 처리할 경우 단순히 배의 산출량을 향상시켜야 할지, 혹은 다른 어떤 원인이 작용했을 가능성도 생각된다.

Table 3. Effects of priming treatment on mean germination time (MGT) and promptness index (PI) of three rice cultivars in suboptimal temperatures

<table>
<thead>
<tr>
<th>Treatment</th>
<th>MGT (day) 10℃</th>
<th>PI 10℃</th>
<th>MGT (day) 14℃</th>
<th>PI 14℃</th>
<th>MGT (day) 18℃</th>
<th>PI 18℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinumbongbyeo</td>
<td>6.31</td>
<td>30.0</td>
<td>5.15</td>
<td>99.7</td>
<td>4.00</td>
<td>182.3</td>
</tr>
<tr>
<td>DW-24</td>
<td>5.42</td>
<td>73.0</td>
<td>4.61</td>
<td>132.3</td>
<td>3.99</td>
<td>182.0</td>
</tr>
<tr>
<td>PEG-60</td>
<td>4.88</td>
<td>91.3</td>
<td>4.35</td>
<td>146.3</td>
<td>3.98</td>
<td>183.3</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.22</td>
<td>4.90</td>
<td>0.09</td>
<td>4.16</td>
<td>0.05</td>
<td>8.21</td>
</tr>
</tbody>
</table>

Gancheokbyeo

<table>
<thead>
<tr>
<th>Treatment</th>
<th>MGT (day) 10℃</th>
<th>PI 10℃</th>
<th>MGT (day) 14℃</th>
<th>PI 14℃</th>
<th>MGT (day) 18℃</th>
<th>PI 18℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.69</td>
<td>64.0</td>
<td>4.38</td>
<td>127.0</td>
<td>3.51</td>
<td>198.6</td>
</tr>
<tr>
<td>DW-24</td>
<td>4.55</td>
<td>101.3</td>
<td>3.99</td>
<td>156.0</td>
<td>3.52</td>
<td>197.6</td>
</tr>
<tr>
<td>PEG-60</td>
<td>3.96</td>
<td>126.0</td>
<td>3.77</td>
<td>171.3</td>
<td>3.51</td>
<td>198.6</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.08</td>
<td>5.92</td>
<td>0.06</td>
<td>3.52</td>
<td>0.06</td>
<td>8.55</td>
</tr>
</tbody>
</table>

Dongjinbyeo

<table>
<thead>
<tr>
<th>Treatment</th>
<th>MGT (day) 10℃</th>
<th>PI 10℃</th>
<th>MGT (day) 14℃</th>
<th>PI 14℃</th>
<th>MGT (day) 18℃</th>
<th>PI 18℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.61</td>
<td>77.7</td>
<td>4.09</td>
<td>142.3</td>
<td>3.24</td>
<td>240.0</td>
</tr>
<tr>
<td>DW-24</td>
<td>4.39</td>
<td>119.0</td>
<td>3.60</td>
<td>175.0</td>
<td>3.24</td>
<td>240.0</td>
</tr>
<tr>
<td>PEG-60</td>
<td>3.91</td>
<td>142.3</td>
<td>3.44</td>
<td>190.3</td>
<td>2.23</td>
<td>241.3</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.07</td>
<td>3.94</td>
<td>0.09</td>
<td>4.11</td>
<td>0.06</td>
<td>4.66</td>
</tr>
</tbody>
</table>

Table 4. Effects of priming treatment on electrical conductivity and dehydrogenase activity of three rice cultivars

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Electrical conductivity (μS cm⁻¹)</th>
<th>Dehydrogenase activity (OD 10 seeds⁻¹ 10 ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinumbongbyeo</td>
<td>Gancheokbyeo</td>
</tr>
<tr>
<td>Control</td>
<td>34.7</td>
<td>64.1</td>
</tr>
<tr>
<td>DW-24</td>
<td>30.3</td>
<td>32.2</td>
</tr>
<tr>
<td>PEG-60</td>
<td>26.4</td>
<td>28.6</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>3.75</td>
<td>1.88</td>
</tr>
</tbody>
</table>
5. Peroxidase와 Esterase의 Isozyme

PEG 용액에 침지한 후 배의 Peroxidase와 esterase의 isozyme pattern을 보기 위해 전기영동한 결과, peroxidase는 동전류를 제외한 신용봉서와 간척비 두 품종 모두 Rf 0.94에서 PEG용액에 침지한 종자가 증류수에 침지한 종자나 대조구보다 약간 진한색을 보였고, esterase는 세 품종 중 공동적으로 Rf 0.87에서 peroxidase와 비슷한 경향을 보였지만 처리간濃度의 차이는 적게 나타났다(그림 3 참조).

과종 전 PEG처리로 자른 발아성이 증진된 생리 화학적 원인구명에 더욱 접근하기 위해 더 많은 동위酵素의 검토가 필요하고, 또다른 접근방법을 모색해야 할 것으로 생각된다.

摘 要

저온에서 범식종자의 发芽增进을 도모하기 위하여 과종 전 종자를 PEG 용액에 퇴적 처리 하였다. 발아율을 높이기 위한 가장 적절한 PEG-600의 농도는 20%였으며, 침지하는 동안 온도는 20±1℃를 유지하였다. 본 실험에서 사용된 종자는 신
4. ベニストク抗瘟病を防げるため電気泳動した結果、PEG溶液に浸した種子は68KDのバンドから発現し、活性を示した。洗浄後、PEG溶液に浸した種子は、濃度が高くなるに従って活性が高まり、洗浄の程度により活性が異なることを確認した。

5. 電気泳動に用いたDNAの同種配列を確認する方法として、SDS-PAGE法を用いた。これはSDS-PAGE法が、電気泳動の結果を視覚的に表現し、その後の解析に役立つことが確認された。

引用文献