H1E F23

FLASH : A Main Memory Storage System 103

FLASH : A Main Memory Storage System

A4, A, AEA

Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim*

Abstract

In this paper, we introduce a new main memory storage system called FLASH that is de-

signed for real-time applications. The FLASH system is characterized by the memory residency

of data and a new fast and dynamic hashing scheme called extendible chained bucket hashing.

We compared the performance of the new hashing algorithm with other well-known ones.

Also, we carried out an experiment to compare the overall performance of the FLASH system

with a commercial one. Both comparison results show that the new hashing scheme and the

FLASH system outperforms other competitives.

1. Introduction

Growing attention has been paid to main
memory database systems due to its fast
'response time that is necessary for real-
time applications, and the rapidly decreasing
cost of RAMs. Although conventional data-
base systems have been widely used due to
its scalability to support very large data-
bases and user friendly interface, their de-
pendency on secondary storage to store and
access data limits its usage into systems in

which the speed of disk I/0 is acceptable.

The transaction response time in convention-
al database systems is limited by latency
delay in disks, which is usually the order of
10~20 ms. This might be encugh for tradi-
tional applications in which a response time
of a few second is tolerable, but is unaccep-
table in real-time applications that require
response within hundreds of micro seconds.
The challenge to overcome the hurdle of
the I/O bound make the sight of researchers
move from disk-based database systems to
memory-based database systems [5]. In
memory—based database systems, the entire

database resides permanently in main memo-

% Computer Technology Division, ETRL

104 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

dlojgteojx g

ry, thereby eliminating disk 1/Os. In order to
support the memory residency of the entire
database, the size of a database must be
smaller than the amount of available memo-
ry. Fortunately, as semiconductor memory
becomes cheaper and the density increases,
it becomes feasible to store relatively large
databases in memory.

For last several years, network information
control/management system (NICS) has been
developed in our instituie to perform both
service control functions and service man-
agement functions under the intelligent net-
work environment. Among the services sup-
ported by NICS, the free phone services and
the credit card calling services are the most
practical. To make these services applicable
in the real world, it is essential to build a
real-time database system that can store
and access a large volume of customer infor-
mation with a time constraint. At least 150
accesses and 40 updates per second should
be affordable in this system. Since the re-
quirement is far beyond the performance of
disk-based database systems, we have built
our own main memory resident storage
system called FLASH.

The access method is a core part in the de-
sign of a database system. Numerous access
methods in main memory databases have
been investigated in [1, 6, 7, 8). Hashing
scheme is 2 well-known technique that per-
mits very fast random access to a large file

through key-to-address calculation. Several

hashing schemes have been proposed in both
main memory and disk-based databases [1,
3, 6, 7, 9]. They differ in how to expand the
address space and how to deal with over-
flows incurred by collisions in which more
than one key has the same hash value.

In main memory environment, chained
bucket hashing (CBH) is known 1o provide
the fastest access time to a static file [6].
CBH scheme, however, may not be directly
applicable for a dynamic file. This is because
it requires global reorganization of the hash
table to expand or shrink its address range.
Without such reorganization, CBH suffers
from low storage utilization or long chain
length when number of inserted keys is too
small or large, respectively.

In disk-based environment, much of
research has focused on hashing scheme that
has ability to adapt its address space for
files with dynamically changing size. These
include extendible hashing (EH) [3], linear »
hashing (LH) [9] and its extensions. Clear-
ly, these schemes may not be suitable for
main memory resident database systems.
This is because the access time for main
memory is the order of magnitude less than
disk devices and there is no block transfer
concept in main memory. Lehman has inves-
tigated the performance and storage
utilization of these schemes [8]. In particu-
lar, EH scheme suffers from the large size
of directory when leaf node size is relatively

small, and LH scheme shows too slow

F1E H25%

FLASH : A Main Memory Storage System 105

response time for insertion and search.
Recently, two new hashing schemes were
proposed for main memory resident data-
base systems: a linear hashing modified for
hash table stored in main memory [7], and
controlled search multidirectory hashing
(CSMH) [1]. »Unl_ike original LH for disk
files, a leaf node in the modified LH contains
a single pointer, which is the head of a link-
ed list of records hashing to that node.

CSMH uses a tree-structured hash directory
- whose nodes adapt their size dynamically to
a changing number of inserted keys. Both
methods achieve linearly increasing expected
directory size with the number of inserted
keys. The expected number of key compari-
sons for a successful search is controlled by
a parameter supplied by users. One short-
coming of modified LH is that the time to
transform a key to address is not constant,
which is due to the linear expansion of
address space. The characteristics of CSMH
has been analyzed in only very high per-
formance margin where average number of
key comparisons for a successful search is
less than 2. Also, loading time of CSMH has
not been analyzed. Both methods assume
that hash values of records are unique,
which may not be attainable in a practical
application.

For the FLASH system, we invented a
new hashing scheme called extendible chained
bucket hashing (ECBH) which is seamless in-
tegration of EH and CBH. ECBH replaces

each leaf node in EH by a chained bucket
hash table and record identifier chains. In
ECBH scheme, a hash table with sufficiently
large size (e.g., 1024 entries) is expected to
cause the same effect of a leaf node with
large size in the original EH; the directory
size is negligible even in a large file. Unlike
a leaf node in original EH, however, the
search time within a hash table can be con-
trolled in O(1). That is, ECBH scheme inher-

‘its high performance from CBH and gradual

extensibility from EH, respectively.

Performance and storage utilization of
ECBH is controlléd by a parameter given by
users. The experiment results show that
ECBH outperforms modified LH and CSMH
in both loading time and search cost. ECBH
and modified LH have similar storage re-
quirement. In particular, the storage over-
head of ECBH is smaller than that of CSMH
in reasonable performance margin. We, also,
show that the FLASH system with the
ECBH scheme outperforms a competitive
commercial main memory storage system
with other hashing scheme.

This paper is organized as follows. The
overall structure of the FLASH system and
the modularity and functionality of each
module are described in Section 2. Section 3
describes the ECBH algorithm in depth. The
original EH and CBH schemes are reviewed
and the way to integrate them are ex-
plained. The performance of ECBH and the
FLASH system is presented in Section 4. Fi-

106 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

dlojelejol X =g

nally, we make a concluding remark includ-

ing the future work in Section 5.

2. The FLASH System

The FLASH system consists of three com-
ponents. interface component, data store
and access component, and transaction com-

ponent (see Figure 2.1). The interface com-

ponent exports a library of functions with
which application programs are built. The
data store/access component creates and re-
moves user files and indices, and stores re-
cords in a file in main memory. The transac-
tion component manages a set of user opera-
tions as a unit of concurrency control and
recovery. The FLASH system supports only
simple lock/unlock primitives at this mo-

ment.

C application
programs

interface component

C API module

data store/access component

cursor module
schema module

ECBH module
file module

\
<———><lock module)

memory partition module \ _
Qhared memory moduly memory-resident

backup copy
of database

transaction component

database

Figur. 2.1 The FLASH system components.

EAL A

FLASH : A Main Memory Storage System 107

2.1 Application Programmer’s Inter-
face(API) Module

Controlling and accessing a FLASH data-

- base are done using the C—callable API h-
brary functions provided by this module.
API library routines perform their functions
by calling the internal routines of the
FLASH system. The utility commands pro-
vide an interactive facility for various statis-
tic on database schema, mounting and dis-
mounting databases, etc.

The API module aléo performs the follow-
ing functions :

- Configuration file management : The
module keeps two UNIX files to store the
disk database and the shared memory con-
figuration. v

- Session management: A session is a ve-
hicle through which a user’s process can ma-
nipulate a database. Authorization and ac-
cess synchronization are based on the ses-
sion concept. The module is responsible for
allocation/free of sessions.

» Authorization managemeni: The
‘FLASH system discriminates the authoriza-
tion of a user through passwords for the pro-
tection of the database. Three levels of au-
thorization are supported; reader, updater,
and DBA. The reader has read—only per-
mission while the updater can read and up-
date records. The DBA is allowed to change

database schema as well as read/update re-

cords. The authorization level of a session s
determined when the session is created.

« Mutual exclusion management : To
keep the internal information of the FLASH
system (i.e., system catalog, free partition
list, etc.) consistent, the FLASH allows only
one function to be active at any moment.
This mutual exclusion is achieved using a
shared variable. The API module first locks
a shared variable before entering a F LA-SH
internal function, and:unlock it when leav-

ing the function.

2.2 Cursor Module

A cursor in the FLASH system can be de-
fined as a navigation vehicle through which
only a set of qualified records is to be locat-
ed and accessed. A user can read, update,
and delete the record under the cursor locat-
ed as desired.

There are two kinds of cursors supported:
sequential cursors and index cursors. Se-
quential cursors allow a user to navigate re-
cords in a file sequentially. Index cursors
support navigating the records having a par-
ticular key value with the help of the associ-
ated index. Users can associate a filter with
a cursor to restrict the set of records to nav-
igate. A filter is represented as a conjunc-
tion of comparison expressions each of
which has the form of (field specification,

comparison operator, constant).

108 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

djolelujojx Ad

2.3 Schema Module

This module manages two system catalog
files: one is FILE_.CATALOG_-FILE, the
other is ECBH-CATALOG-FILE. FILE-
CATALOG_FILE stores the information on
user —defined files such as file name, length
of a record, storage map, lock status, and a
pointer to its index information in ECBH-
CATALOG_FILE, etc. FILE CATALOG-
FILE is associated with an index on the file
name to provide fast lookups through a
given file name.

ECBH_CATALOG_FILE keeps informa-
tion on indices buili such as key field de-

scription and storage map, etc.
2.4 ECBH Module

The index scheme employed in the
FLASH system is ECBH that is an integra-
tion of EH and CBH. The ECBH module sup-

ports creation/deletion of ECBH indices, and
insertion/deletion of keys through the indi-
ces. The details of ECBH algorithm are pre-

sented in Section 3.

2.5 File Module

The file module manages a data file which
is a collection of identical type of records.
All records of a file have the same format.
More precisely, we allow only fixed size
fields such as integer, float, and fixed
strings.

A file is implemented as a doubly linked
list of fixed size of memory partitions (see
Figure 2.2). A partition may not be shared
by more than one file. A partition consists
of array of record slots and control informa-
tion. The control information contains the
previous and the next partition numbers for
the implementation of doubly linked list, and

the first free slot number in the partition.

q llpagll H«——@

partition /

\

partition 2

partition n

free slot

record slot /

record slot 2

2

record slot n

control information

Figuere 2.2 Storage structure of a file.

H1% 2%

'FLASH : A Main Memory Storage System 109

And a record slot has the format of (status,
data). Status represents the status of the
slot: being used or free. Data is the concate-
nation of data fields.

The status part of a free slot contains the
next free slot number in the same partition.
In this way, free slots in a partition forms a
stack. Also, the partitions of a file that have
free slots form a stack by chaining iogether.
This scheme for free space makes it easy
and efficient to find room for a new record
at insertion time. That is, allocation of a free
slot can be done by just popping the top
from the stack of free slots and partitions,
and freeing of a slot can be processed sim-
ply by pushing it to the stack.

The location of a record is identified
through its RID which consists of {pariition
number, slot number). The partition number
identifies the partition that the record slot
belongs to. The slot number is used to locate
the record slot in the partition. In the
FLASH system, a RID is represented in 32
bits to take advantage of fast transfer be-
tween functions using CPU registers, while
allowing reasonable size of a database. A da-
tabase, a file, or an index can grow up to 4
giga bytes. The number of files and indices
is limited by the number of available parti-

tions (2 millions to the maximum).

2.6 Memory Partition Module

The primary role of the memory partition

module is to manage the shared memory
partitions and provide the upper modules
with the interfaces for allocation/free of par-
titions. The module also implements the
functions to manage the backup copy of a
database such as formatting disk volumes,
mounting and dismounting the database be-
tween shared memory partitions and disks.

A disk database in the FLASH system
consists of several disk volumes, each of
which consists of a sequence of partitions of
equal size (16K bytes). Each volume may be
either a UNIX regular file or a raw device
file. The volume concept is meaningful only
when a backup copy is taken. Once the data-
base is mounted intc memory, no volume
boundary exists, but only partitions are
scattered in shared memory. The mapping
between the disk volumes and the shared
memory partitions is based on the database
configuration file.

Figure 2.3 shows the structure of the
shared memory partitions. A partition has a
four-byte control information at a fixed lo-
cation to identify its modified status and the
next free partition number. The first parti-
tion is reserved for the generic information
on a database such as 6wner, create/mount
timestamp, the FLASH software version
number used for the database creation, and
the catalog file locations. Free partitions
form a stack which is implemented as a link-
ed list.

For the direct identification of the virtual

110 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja'Kim

glojebujol 2 g

partition address table

———————| partition n

partitions

Figure 2.3 Structure of the shared memory partitions.

address of each partition, an array of
address table is maintained as described in
the figure. This array must be contiguous.
_Thus, the operating system must be config-
ured so that the maximum size of a shared
memory segment is large enough to hold the
entire pariition address table.

The entire contents of a database must be
loaded into shared memory before accessed.
Therefore, the shared memory must be con-
figured large enough to store the entire data-
base.

In order to mount a database, the memory
partition module first constructs a collection
of partitions of fixed size in shared memory
with the help of the shared memory module,
then reads each disk partition from the disk
volumes to the corresponding memory parti-

tion.

2.7 Shared Memory Module

The databases mounted into memory must

be accessible by multiple application pro-
cesses. In order to achieve this, the shared
memory module make use of the shared
memory facility of the UNIX System V IPC
package. Each application process first at-
taches the FLASH shared memory parti-
ilons at its address space and then accesses
them. Note that we force the operating
system not to swap out any partition of the
shared memory region to disk.

In the FLASH system a database occupies
only one shared memory segment in terms
of the operating system. Therefore, the oper-
ating system must be configured to support
space for a shared memory segment large
enough to load an entire database.

The address at which a shared memory
segment is attached depends on the applica-
tion process, which implies that the address
at which a database is mounted may be dif-
ferent at each mount time.Therefore, no
upper modules including user programs in

the FLASH system can store a virtual mem-

1 H2N

FLASH : A Main Memory Storage System 111

ory address in the database assuming that

the address is consistent across mounts.
2.8 Lock Module

‘Concurrent accesses to the same data
item by multiple users must be controlled in
the way that they are given the illusion that
their processes are executed serially. .With
out such. control, the updates by one uéer
may be interfered or even lost by other
users.

Numerous algorithms for concurrency con-
trol have been proposed. They are catego-
rized into locking, timestamp, and optimistic
scheme [2]. The locking method is known
simple o implement. It has been observed
that a finer locking granule such as an indi-
vidual record to reduce data contention is
not much effective in main memory data-
bases because transactions complete very
shortly. The lock granule of a main memory

database system is suggested to be as large

as possible, in an extreme case, upto the en-
tire database [5].

From the above reasons, the FLASH
system implements locking scheme with a
very coarse granule, l.e., a file. Only lock/
unlock a file with exclusive mode is avail-

able at this moment.

3. Extendible Chained Buck-
et Hashing

3.1 Review of Extendible Hashing
and Chained Bucket Hashing

We briefly review original CBH and EH
methods. CBH consists of a hashing funec-
tion, a hash table and linked lists of RIDs
(see Figure 3.1) [6]. The hash function
transforms a key value into an address
value whose range is the cardinality of the

hash table. The address is used to locate an

key

address A

hash table

—t— RID,
<& [T Ik

—}—»{RID, [A

RID lists

Figure 3.1 Chained bucket hashing scheme.

112 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

tolgtslolx A

entry of the hash table. The entry points to
a list of RIDs having the same hash address.
The time to compute the hash value of a key
and to locate an entry of the hash table is
constant. Wilen keys are uniformly distribut-
ed, the expected chain length of CBH equals
, where m is the number of inserted keys

and D is the hash table size. When D is
fixed, therefore, the search cost linearly in-
creases as m grows. This performance char-
acteristics is not desirable because the pri-
mary goal of a hash-based ac;cess method is
to achieve search time in O(1). It is possible
to expand the hash table (e.g., doubling the
hash table) whenever the expected chain
length exceeds a threshold value. However,
the expansion requires a total reorganization
of the hash table and re-linking of the RIDs,

which may cause an intolerable performance
drop in a typical main memory resident da-
tabase application.

EH employs a hash function, a dynamic
directory, and leaf nodes pointed to by en-
tries of the directory (see Figure 3.2) [3].
A key is transformed into a hash value. The
global depth least significant bits of the hash
value is used to locate a directory entry. The
entry points to a leaf node which is fixed
size (generally, a disk page). A leaf node
with local depth d contains RIDs hash values
of which have the same d least significant
bits. Therefore, a leaf node may be shared
by more than one entry of the directory. In
the figure, R(x) represents the RID of a re-
cord where x is a sequence of global depth

least significant bits of its hash value. When

global depth

3
key 000 —
001
011 ~/
100f /
hash value 101] —
10l
111} -~
directory

o
(3]
R(010)
1]
Y

local depth

-

R(000) | R(100)

R(001) | R(101)

7]

R(110)

R(111)

leaf nodes

Figure 3.2 Extendible hashing scheme.

E1E H2H

FLASH : A Main Memory Storage System 113

a leaf node with local depth d overflows, 1t
splits into two nodes based on (d + 1)-th
least significant hash address bit of its RIDs,
and increases d. These two nodes correspond
to siblings when the directory is represented
as a binary radix search tree. In Figure 3.2,
the nodes with local depth 3 (i.e., those con-
taining R(010) and R(110), respectively)
are siblings: If local depth of a leaf node is
greater than the global depth after a split,
the directory doubles to make room to point
the split leaf nodes.

Let b be the maximum number of RIDs in
a leaf node. When b > 1, Flajolet has inves-
tigated the expected number D of directory

entries of EH with a coarse approximation

[4],

3.92 *%
=T m

b

where m 1s the inserted records. Therefore,

the directory size of EH with sufficient large’

node size increases almost linearly as m
grows. In fact, the expected directory size is
neg-ligible compared to the storage for leaf
nodes. For example, if b = 1024, then after
a mil~lion inserts, the number of directory
entries is expected to be 4068.8. For such a
large node size, however, the search cost
would not be acceptable in many high per-
formance main memory resident databases.
As b becomes closer to 1, the number of di-

rectory entries grows in more than linear.

For b = 1, for example, it has been shown
that doubling the number of inserted records
increases the number of hash address bits
needed to differenti~ate the hash addresses
by two:-i.e., the expected directory size of
EH with leaf node size 1 is in O(m? [11.

3.2 Integrating Extendible Hashing
and Chained Bucket Hashing

From the above observation, we develop a
new hashing scheme called extendible
chained bucket hashing (ECBH) by combin-
ing EH and CBH seamlessly. ECBH replaces
each leaf node in EH by a chained bucket
hash table and RID chains. In ECBH meth-
od, a hash table with sufficiently large size
(e.g., 1024 entries) is expected to cause the
same effect of a leaf node with large size in
the original EH; that is, the directory size is
negligible even in a large file. Unlike a leaf
node in the original EH, however, the search
time within a hash table can be controlled in
O(1). That is, ECBH scheme inherits the
high performance of CBH and the gradual
extensibility of EH at the same time.

Figure 3.3 shows an example of ECBH
structure. ECBH consists of a hash function,
a directory, several hash tables and linked
lists of RIDs. The directory in ECBH grows
and shrinks in the same way of the original
EH. Hash tables have the same fixed
cardinality. Unlike in the original CBH, each

hash table is associated with a local depth.

114 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

diojelelo]~ g

local depth
global depth > /
—1™{R(000)| A
3 :
—T P R(100) |A
key 000 =
3
0011~ —®R(010
or0l = : ©10)| A
ol —~ 1]
100 7/ —»[z -
(101) RAID|A
hash value 101 // :
o[— % [ROOD| A
111 ~ 3 l
——%|ROIO|A
directory hash table RID lists

Figure 3.3 Extendible chained bucket hashing structure.

The local depth has the same meaning that
of a leaf node in the original EH. A key K is
transformed into a hash value H. We view a
hash value H as a concatenation of two se-
quences of bits: (H1:H2). We use H2 to lo-
cate an éntry of directory (i.e., to locate a
hash table) and H1 to locate an eniry of the
hash table. If the cardinality of a hash table
is C, the number of bits reserved for H1 is
calculated as . In practice, the cardinality C
should be power of two in order to take
advantage of bit operator rather than modu-
lo operator. The remaining least significant
bits of H form H2 which determines the

maximum global depth. For example, if H is

represented .32 bits and the cardinality C is
1024, 10 most significant bits of H form H1
and remaining 22 least significant bits repre-
sent H2. In this case, the maximum global
depth will be 22.

The performance of ECBH is controlled
by a parameter 1 supplied by users. The pa-
rameter | is used to control the average
chain length of ECBH. Average chain length

Lavg is computed as

Invg =

=—3L
Mi=1 RID

where represents the number of chains pre-

ceding RIDi, and m is the number of insert-

1% 25

FLASH : A Main Memory Storage System 115

ed RIDs. In Figure 3.3, for example, LR
(111) is 2 and Lavg is . After a record is in-
serted to a hash table with local depth d,
Lavg is computed and checked if it exceeds
I. If it exceeds, the hash table splits into two
tables based on (d + 1)—th least signifi-
cant hash address bit of its RIDs, and in-

creases d. If the new local depth is greater

than the global depth, the directory is dou-
bled to make room to point the split hash ta-
bles. If the global depth reaches the maxi-

'mum value, no more split is processed even

when the average chain length exceeds the
control parameter.
Figure 3.4 shows the algorithm to split a

hash table in more detail. The maximum glo

Algorithm SPLIT
input : P-the hash table to be split

4/ The followings are constants ;
/ C: cardinality of a hash table

/ Smes . maximum global depth

2. Allocate a new hash table Q.
3. For 1 < ;7 = (, do the following.

3.1.1 Form key value K from R.
3.1.2 Compute hash value H from K.

move Rto ;—th entry of Q.

/[control parameter for average chain length

1. If local depth of P has reached to gu., then stop.

3.1 For each RID Rin the list pointed by 7—th entry of P, do the following.

3.1.3 If(d+1)-th least significant bit of His 1, where d is the local depth of P, then

4. Increase local depth of Pby one, and set local depth of @ to that of P.

5. If local depth of Pis greater than the gloval depth, double the directory(the new area is
simply filled with the original directory contents), and increase global depth by one.

6. Set every sibling entry of the directory that points Pto Q(in order to make the directo-
ry comply with Step 3.1.3).

7. Calculate average chain length L., and if it is greater than /, then SPLIT using one of
Por ¢ that has larger average chain length.

Figure 3.4 Algorithm SPLIT for ECBH.

116 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

diolgso] 2 Ag

bal depth gmax is calculated as (h - logC),
where h is the number of bits of a hash
value and C is the cardinality of a hash
table. Insertion, search, and deletion are
straightforward. In particular, deletion of a
record may leave a hash table empty. When
one of siblings becomes empty, we simply
drop it, and change the directory entries con-
taining it to point to its sibling. The local
depth of its sibling is decreased by one. If
every pointer in the directory equals to its
sibling pointer, we halve the size of the di-
rectory and decrease the global depth by
one. It is possible to use another parameter
to control minimum storage utilization. Two
siblings can be merged if their storage usage
is less than the control parameter even when

both are not empty.
3.3 Refinements for Practical Use

As in the case of other hash-based access
methods, ECBH may also be skewed if hash
val-ues are not uniformly distributed. Even
though the hash function itself provides vefy
good randomization, the degeneration can
happen if many duplicated keys are inserted.
In- the-ory, none of modified LH, CSMH,
and ECBH can store two RIDs keys of
which are the same, while keeping the
average chain length at 1.0. The directory
will grow infinitely. However, there are
many database applications that require

very fast key-associative access to a large

file that contains many duplicate keys. In
order to broaden the applicability of ECBH,
we present the following refinements to
ECBH scheme.

First, we can limit the infinite growth of
the directory by using a reasonable maxi-
mum global depth. Recall that the maximum
global depth gmax is computed as (;-log(),
where h is the number of bits of a hash
value and C is the cardinality of a hash
table. This number may be too large depénd-
ing on application. For this case, users may
introduce a different maximum global depth
k£ = gmax for a particular ECBH. Then, the
number of directory entries of the ECBH is
limited by 2%

Second, we can introduce another parame-
ter u to control storage utilization of ‘a hash
table. Storage utilization of a hash table is
defined as the ratio of the number of non-
empty entries to total number of entries. A
hash table is not split if its storage
utilization is less than u even though the

average chain length has exceeded the con-

“trol parameter 1. When the storage

utilization of a hash table becomes less than
u after a deletion, we test if merging it with
its sibling still results in lower storage
utilization than u. If the test is true, we
merge them and decrease the local depth by
one. The merging does not require any com-
putation of hash values. Instead, an RID list
linked from i-th entry of one hash table is
simply appended to i-th entry of its sibling.

H1E 2%

FLASH : A Main Memory Storage System 117

Third, splitting a hash table may intro-
duce an empty hash table; that is, all RIDs
may be moved to one hash table. We can im-
plement an empty hash table without
actually occupying the amount of storage
for a non-empty hash table. It is sufficient
to reserve one variable for local depth to

represent an empty hash table.

4. Performance Experiment

4.1 ECBH Experiment

4.1.1 Experimental Environment

We implemented three hashing schemes,
LH, CSMH, and ECBH for the purpose of
per—-formance comparison. Modified LH re-
quires contiguous memory for the directory
while it expands. We implemented a dynam-
ic array which is suggested by [7]. The size
of a seg-ment for the dynamic array is set
to 1024 in order to take advantage of bit op-
erators when locating a directory entry. Di-
rectory size shown in results includes the
storage overhead for the dynamic array. A
directory entry takes 8 bytes: a four-byte
pointer to its RID chain and a four-byte in-
teger to remember the number of RIDs in
the chain.

A directory entry in CSMH may become a
head of either an RID list or a subdirectory.

We implement a directory entry in 8 bytes

with the help of union facility of C program-
ming language. The first byte of each entry
is used to identify the type of the entry. If
the type is the head of an RID list, then the
remaining area of the entry contains the
number of RIDs and start address of the list.
If the type is the head of a subdirectory, the
remaining area describes its depth, the num-
ber of its subdirectories, and start address of
the array of its entries.

For ECBH test, we set the cardinality of a
hash table to 1024. The size of a directory
entry is 4 byte: address of its hash table.
The size of a hash table entry is 8 byte! a
four-byte pointer to the RID chain and a
four-byte integer to store the number of
RIDs in the chain. Each hash table is associ-
ated with 12 byte control information: local
depth, chain length, and number of stored
RIDs.

All test programs are implemented in C
programming language. We use 32 bits to
represent a hash value. Hash function is im-
plemented based on permuted table [10].
The length of a key is 8 bytes. Keys are pop-
ulated using library function random(3)
which employs a non-linear additive feed-
back random number generator. Each key
set contains 50,000 items which are unique.
In fact, their hash values are also unique. Li-
brary function malloc(3) is used to allocate
or expand memory area. Library function
memcmp(3) is used to compare two key val-

ues. A record identifier takes 4 bytes. The

118 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

gjoleteojx g

machine platform is Sundc with 24 mega-
bytes physical memory on which SunOS 4.1.
1 is running. We locked test program code
and data segment in core to keep them from
‘swapping out to disk. All test programs
were run in single-user mode. All measure-
ment is the average of 10 runs each of
which uses a set of keys generated with a

different seed.

4.1.2 Experimental Results
In all strategies, storage overhead grows

linearly as the number of inserted keys in-

creases (see Figure 4.1). The storage space
requirement for EBCH and modified LH is
almost the same. In a very high performance
margin (i.e., when the average chain length
is close to 1.0), the amount of storage space
for modified LH and ECBH grows up to
about 4 megabytes. This implies that both
schemes basically follow the storage
utilization characteristics of chained bucket
hashing. As pointed out in [1], CSMH re-
veals the best storage utilization when
average chain length is less than 2.0. How-

ever, as the length grows, CSMH takes more

600 }
500 }
400 ¢t

300 ¢

directory and hash table size (kilobytes)

CSMH —o—
ECBH —— |
Modified LH ——

P

0 10000 20000

30000 40000 50000

number of inserted keys

Figure 4.1 Storage cost vs. number of inserted keys.

storage than others (see Figure 4.2 and Fig-
ure 4.3). Note that storage cost in the fig-
ures does not include memory space to store
RID chains because this space is the same

regardless of hashing strategies. The results

in Figure 4.3 verifies that the expected num-
ber of records per hash table entry obtained
by analysis complies with the experiment
result.

Figure 4.4 shows the time to load 50,000

H1% F2%

FLASH : A Main Memory Storage System

119

10000

directory and hash table size (kilobytes)

CSMH wa—
ECBH ——
Modified LH e

]O A 5 i " A A
1 2 3 4 5 6 7 8
average chain length
Figure 4.2 Storage cost vs. average chain length.
18 v v v v v
CSMH —-—
16 } ECBH -— |
Modified LH -e—
o
e 14})
o
Iy
—g 12¢ 4
G
210}
s
o 8F 4
g
S5 6} d
S
2,)
o>
2
2 4
0 M L " 3 ' A
1 2 3 4 5 6 7 8

average chain length

Figure 4.3 Keys per directory entry vs. average chain length.

keys with different average chain length.
Modified LH and ECBH have almost the

same shape of graphs. We believe that per-

formance difference comes from the cost to
locate a directory entry and the number of

function calls to split. Modified LH relies on

120 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim dlolelolA A

CSMH —«—
ECBH -+
12 Modified LH -e— |

loading time (seconds)

1 2 3 4 5 6 7 8
average chain length
Figure 4.4 Loading time vs. average chain length.
12 v v v v

CSMH ——
ECBH —~—
ol Modified LH —— |

oo

loading time (seconds)
IS o

20000 30000 40000 50000
number of inserted keys
Figure 4.5 Loading time vs. number of inserted keys when the average

chain length is fixed to 1.5

0 10000

modulo operators to locate a directory entry at every split, while ECBH splits one hash
from a hash value while ECBH makes use of table at a time. CSMH suffers from too fre
bit operators. Modified LH splits one RID quent reorganization of subdirectories. Still

chain at a time and calls the split function less, it is not easy to reuse or preallocate

i H|2% FLASH : A Main Memory Storage System 121
90 v y— -~ -
CSMH -—
80} ECBH —— |
Modified LH ~a—
70 L

A
(=3

W
(=4

search time (microsecond)

-

e

e 2. i

1 2 3

4

5 6 7 8

average chain length
Figure 4.6 Search time vs. average chain length.

memory areas 10 reduce memory manage-
ment cost because the size varies over
subdirectories. As average chain length
grows, the loading time becomes closer to
that of ECBH. Figure 4.5 presents loading
time when average chain length is fixed to
1.5. All strategies show linearly increasing
response time as number of inserted keys
grows.

Figure 4.6 represents average time to
search a record in each hashing scheme. The
average time 1s measured as the total time
to search all records divided by number of
records. ECBH outperforms both modified
LH and CSMH, and its performance is lin-
ear. In modified LH, locating a directory
entry requires extra computation if a hash
value falls into expanded portion of directo-

ry entries. The portion of expanded entries

varies over average chain length. As the ex-
panded portion increases, the probability
that a hash value falls into that portion in-
creases. That is, the time to locate a directo-
ry eniry increases. This explains that the
search time of modified LH has a periodic
function form. In the case of CSMH, the
search time decreases slightly even when
average chain length increases from 1.05 to
1.5. This is because increasing average chain
length makes the directories more balanced,
thereby reducing the number of directory ac-
cesses. In overall, modified LH is turned out
slower than both ECBH and CSMH because
of the cost of modulo operation to locate a
directory entry. CSMH is slower than ECBH
because of the overhead to traverse its tree-

structured subdirectories.

122 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

gloletulo] & Ay

4.2 FLASH Experiment

The test is performed in HP 9000 Series
800 (PA-RISC CPU, HP-UX version 8.0).
The test database contains only one file con-
sisting of 50,000 records. The length of a re-
cord is 24 bytes. An ECBH is built on a key
field with 8 byte characters. We collected

the response times of various data manipula-

tion operations in a single user mode. Each
response time is measured in seconds as the
average of at least 10 runs of the same oper-
ation. ‘

Table 4.1 summarizes the measurement
items and the results of the performance
comparison of the FLASH system and a
well-known commercial product (we call

this System-A from now on).

Table 4.1 Performance of the FLASH system and System-A.

No. Description System-A FLASH 1.0.
PO1 Load the entire database to memory 5473.948 6596.404
PO2 Flush all updates of the file to disk 3507.337 2656.866
P03 Search a record without index 1167.863 973.086
P04 Search a record with index 0.077 0.068
P05 Insert a record with no~index/no-sync 0.042 0.025
P06 Delete a record with no-index/no-sync 0.076 0.041
P07 Update a record with no-index/no-sync 0.101 0.048
PO8-F First attempt to P08 256.148 N/A
P08 Insert a record with no-index/sync 0.280 60.047
PO9-F First attempt to P09 107.827 N/A
P09 Delete a record with no-index/sync 0.308 45.348
P10-F First attempt to P10 0.757 N/A
P10 Update a record with no—-index/sync 0.330 29.949
P11 Insert a record with index/no-sync 0.074 0.130
P12 Delete a record with index/no-sync 0.102 0.089
P13 Update a record with index/no-sync 0.195 0.194
P14-F First attempt to P14 1703.827 N/A
P14 Insert a record with index/sync 0.916 120.653
P15-F First attempt to P15 182.626 N/A
P15 Delete a record with index/sync 0.329 132.213
P16-F First attempt to P16 657.570 N/A
P16 Update a record with index/sync 1.427 263.843
S1 Calculated size of the data file 1.200Mb 1.200Mb
S2 Size of the stored data file N/A 1.409Mb
S3 Size of the index N/A 0.885Mb
S4 Size of the entire database 2.483Mb 2.392Mb
S5 Size of the catalogs 6.376Kb N/A

1% F20

FLASH : A Main Memory Storage System 123

Before analyzing the experimental results,
it is worthy to note some features specific to
System—A. Firstly, the performance of the
operations involving disk I/0s depends a lot
on the buffer management of operating
system since System-A is designed not to
utilize the Unix raw device. For instance,
the successive execution of the POl opera-
tion may load a database not from the disk
but from the operating system buffer once
the previous operation leaves data in the
buffer.

Secondly, the first execution of each up-
date operation with disk synchronization
(P08, P09 P10, P14, P15, P16) takes too
much time compared to succeeding execu-
tions for some reason that we can not identi-
fy from the manual. We, therefore, exclude
these cases in the performance comparison
by separating them into P08-F, P09-F, P10
-F, P14-F, P15-F, P16-F.

Lastly, the update operations with disk
synchronization (P08, P09 P10, P14, P15,
P16) are supposed to flush the updates out
to the disk immediately. In a simple test, we
recognized that 6ne disk page write opera-
tion consumes more than 7 ms. System-A’s
results for the operations, however, show
about 1 ms. We believe that the updates are
synchronized only in the operating system
buffer, not in disk, which is incorrect imple-
mentation. We ignore these operations in the
performance comparison as well.

It is shown that the FLASH system out-

performs System-A in all cases except for
the insertion of a record. The search opera-
tions (P03, P04) of FLASH are not behind
System—A in spite of the overhead of its
cursor management for user éustomization.
The updates without either an index or disk
syndhronization (P05, P06, P07) of the

"FLASH system are almost twice faster than

System-A. However, the updates with an
index (P11, P12, P13) of the FLASH
s&stem becomes about the same as or even
slower In insertion case (P11) than System-
A. This phenomenon is predictable from the
hashing scheme; FLASH. employs dynamic
hash table while System—A does static one.
Regarding delete and update operations with
an index (P12, P13), it is hardly under-
standable until the System-A’s implementa-
tion of the hash table is investigated in
depth that FLASH’s dynamic hashing
scheme is faster than System-A’s static
hashing scheme. Unlike 'in System-A, P11
takes longer than P12 in FLASH. The rea-
son is that an insertion may cause a bucket
of an ECBH index to split, resulting in re-
hashing all keys in the bucket. In contrast,
merging buckets céused by deletions does

not need the rehashing process.

5. Conclusion and Future Work

The free phone service and credit card

124 Pyung-Chul Kim, Byung Gwan Jung, Moon Ja Kim

dlojetujolx g

calling service in NICS require real-time
processing of a large volume of customers
information. The database system for the
services should support significantly fast
response time that is far beyond the capabili-
ty of the traditional disk-based database
systems. To meet the requirements, we have
designed and implemented a main memory
storage system on top of UNIX.

We proposed a new access method for
main memory database systems named ex-
tendible chained bucket hashing (ECBH)
which 1s a complementary Integration of
original chained bucket hashing and extendi-
ble hashing. ECBH inherits the high perform-
ance and the gradual extensibility from
chained bucket hashing and extendible
hashing, respectively: The performance and
storage utilization of ECBH is controiled by
a parameter given by users. We also de-
scribed how to refine ECBH structure to
deal with duplicate keys and skewed key in-
seriions.

We carried out an experiment to compare
ECBH with other strategies proposed for
main memory databases: linear hashing
modified for main memory and controlled
search multidirectory hashing. The experi-
mental results show that ECBH outperforms
the proposals in both loading time and
search cost. ECBH and modified linear
hashing require similar storage space. In par-
ticular, the directory and hash table size of

ECBH is smaller than that of controlled

search multidirectory hashing in a reason-
able performance margin. We also showed
the outstanding performance of the FLASH
system in both speed and space costs by

comparing it with a commercial product.

The current version of FLASH (FLASH
1.0) is a multi-user main memory storage
system employing ECBH as the primary ac-
cess method. FLASH 1.0 supports dynamic
file management, key-associative exact
match retrieval, primitive loéking, taking
anapshot, primitive form of authorization,
etc. However, the functions such as recovery
based on transaction concept, key-associat-
ed range match retrieval, and deadlock de-
tection are not implemented yet. We leave

the features for our future extension.

References

A. Analyti and S. Pramanik, “Fast Search
in Main Memory Databases,” Proc. of
ACM SIGMOD Conf. on Management of
Data, 1992, pp. 215-224.

P. Bernstein, P. Hadzilacos, and N. Good-
man, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, 1987.

R. Fagin, J. Nievergelt, N. Pippenger, and
H. Strong, “Extendible Hashing - A Fast
Access Method for Dynamic Files,” ACM
Trans. on Database Systems, Vol. 4, No. 3,
1979, pp. 315-344.

1 F2HK

FLASH : A Main Memory Storage System 125

P. Flajolet, “On the Performance Evaluation
of Extendible Hashing and Tree Search-
ing,” Acta Informatica, Vol. 20, 1983, pp.
345-369.

H. Garcia-Molina and K. Salem, “Main
Memory Database Systems: An Over-
view,” IEEE Trans. on Knowledge and Data
Eng., Vol. 4, No. 6, 1992, pp. 509-516.

D. Knuth, The Art of ComputerAProgram-
ming, Vol. 3, Addison-Wesley, 1973.

P. Larson, “Dynamic Hash Tables,” Comm.
of ACM, Vol. 31, No. 4, 1988, pp. 446~
457.

T. Lehman and M. Carey, “A Study of

Index Structures for Main Memory Data-
base Management Systems,” Proc. 12th
Int. Conf. on Very Large Databases, 1986,
pp. 294~303.

W. Litwin, “Linear Hashing: A New Tool
for File and Table Addressing,” Proc. 6th
Int. Conf. on Very Large Databases, 1980,
pp. 212-223.

P. Pearson, “Fast Hashing of Variable
Léngth Text Strings,” Comm. of ACM,
Vol. 33, No. 6, 1990, pp. 677-680.

