The Journal of the Korean Society of
Coastal and Ocean Engineers
Vol. 6, No. 3, pp. 275~280, September 1994

Re-derivation of Addded Mass Coefficient of
Circular Cylinder near Bottom Boundary
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Abstract () The analytic solution of the forces acting on a horizontal circular cylinder affected by
the bottom boundary is re-derived using the complex potential. The reason of the re-derivation of
the analytic solution is such that it is found that the analytic solution of Yamamoto et al. (1974)
does not simulate the behavior of the added mass coefficient accurately. The re-derived formula
of the added mass coefficient Cy is different from that of Yamamoto er al. (1974), while the re-
derived formula of Cy simulates the tendency of the behavior of the added mass coefficient success-
fully.
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1. INTRODUCTION

A circular cylinder is one of the most efficient
forms in the marine structures, because it has the
cross section supporting the largest external force
per unit surface area, and because the external for-
ces acting on a circular cylinder can be analyzed
simply because of its symmetry. The cylinder near
the sea bottorn may become a pipeline. Therefore,
the analysis of the forces acting on the pipeline
follows naturally that the forces acting on a horizo-
ntal cylinder are analyzed by considering the effects
of the boundary conditions.

In a two-dimensional irrotational flow of inviscid
incompressible fluid, the force(F) per unit width ac-
ting on a circular cylinder consists of the inertia
force(F,) parallel to the direction of the flow and
the lift force(F,) perpendicular to the direction of

to o

the flow, whose mathematical form may be expres-
sed as follows:

F=F,+ Fy:prAa—;tj~ +0.5pC DU M

where p is the density of water, A is the cross-sec-
tional area of the cylinder, D is the diameter of
the cylinder, U is the horizontal fluid particle velo-
city, t is the time, C; is the inertia force coefficient,
C. is the lift force coefficient. The relation of Cc
with Cy can be expressed as C,=1+Cy where Cum
is the added mass coefficient. In the case of this
flow, the drag force does not exist.

An analytic solution of Eq. (1) is useful to under-
stand the behavior of the pipeline near the bottom
boundary in the sea, and may give some criteria
for the design of a pipeline. But the analytic solu-
tion cannot be obtained simply because Eq. (1) is
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subject to both the free surface boundary condition
and the bottom boundary condition. Havelock
(1936) developed an analytic solution for an uni-
form steady horizontal flow, where the effect of the
free surface on the forces acting on a cylinder sub-
merged in a flow is negligible if the submergence
is greater than about four cylinder diameters. Ogil-
vie (1963) derived the forces acting on a cylinder
which is oscillating near the free surface. If a cylin-
der is submerged 3 or 4 diameters, the added mass
coefficient resulting from the effect of the free sur-
face may be negligible. Yamamoto et al (1974) re-
ported that for a cylinder submerged as little as
one diameter the forces resulting from the surface
effect are small. Therefore, the effect of the free sur-
face boundary on the forces may be negligible for
a cylinder near the sea-bottom.

In this study re-derivation of an analytic solution
of the forces acting on a circular cylinder is perfor-
med based on the procedures of Yamamoto er al.

(1974), where the bottom boundary condition 1s co-
nsidered and the free surface boundary condition
is neglected. The re-derived solution is compared
with the solutions of Yamamoto et al. (1974). and
The reason of the re-derivation of the analytic solu-
tion is as follows: the analytic solutions of Yama-
moto ¢t al. (1974), and Nath and Yamamoto (1974)
do not simulate the tendency of the added mass
coefficient accurately.

2. ADDED MASS COEFFICIENT

The pressure acting on a fixed cylinder consists
of Py and P* where Py is the pressure resulting
from the uniform flow far from the cylinder and
P* is the pressure resulting from the distorted flow
region near the cylinder. Therefore, the pressure ac-
ting on a fixed cylinder in an uniform flow with
the velocity U is Pi,+P*, while the pressure acting
on an oscillating cylinder in a calm water is P*.
The Pirinduced force per unit width acting on a
cylinder is expressed as p-A-gU/gt, which is known
as the Froud-Krylov force. On the other hand, be-
cause a distribution of P* on the surface of a cylin-
der may not be calculated easily, the concept of
the addes mass coefficient is introduced. If it is as-

sumed that P* accelerates fluid particles surroun-
ding the cylinder with acceleration gU/gt, the
amount of accelerated fluid particles is defined as
the added mass. Therefore, the added mass coeffi-
cient Cy can be defined as follows:

Assumed amount of accelerated fluid
[ with gU/gt resulting from P* ]
Amount of fluid corresponding to
[ volume of cylinder ]

Cu= @

Therefore, the inertia force coefficient in Eq. (1)
may be expressed as Ci=1+Cu. Cy=05 for a
sphere in an uniform flow and Cu=10 for a cylin-
der based on the analysis of the potential flow with
neglecting the boundary conditions, thus Cy may
be greater than 1 for a cylinder affected by the bot-
tom boundary.

3. RE-DERIVATION OF ANALYTIC
SOLUTION

In a two-dimensional irrotational flow of inviscid
incompressible fluid, consider a doublet(strength=,
u=u,) near the bottom boundary apart from iS,
(So=S) which moves with the horizontal velocity
U as shown in Fig 1,
where i=(— )", a(=D/2) is the radius of the cylin-
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Fig. 1. Sketch of Doublet affected by Bottom Boundary.
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der, and S(>a) is the distance between the bottom
and the center of the doublet. Since the bottom
boundary condition(g®/gy=0 at y=0; ® is the ve-
locity potential) does not meet because of the exis-
ting original doublet, the bottom condition can be
satisfied by setting an image doublet with the same
strength(=p,) at the image point(0, —iS,). Therefore,
the complex potential W, for above two doublets
may become

) U ®

W":“*’( Z+iS,

z—iS§,
where z=x+1iy.

The original circular cylinder is distorted because
of the image doublet whose function is to satisfy
the bottom boundary condition. To make the disto-
rted cylinder circular, another doublet with the stre-
ngth y, is set at the point (0, iS,) within the original
circular cylinder. An image doublet with strength
W is set at the image point (0, —iS)) to satisfy the
bottom boundary condition. After the above proce-
dures are repeated infinitely, the shape of the origi-
nal cylinder may become circular and the straight
bottom boundary may be obtained. Therefore, the
complex potential W describing both the original
circular cylinder and the straight bottom boundary
can be expressed in the form of series:

aw) o ©

W=0+i¥= % pk< :
k=0 z—1iS¢

where @ is the velocity potential, and ¥ is the st-
ream function. In the above complex potential, the
position(Sy) and the strength(y,) of the k-th doublet
within the original doublet must be specified. The-
refore, it is required to calculate the position(S,) and
the strength(u) of the k-th doublet whose function
is to compensate the distorted original doublet resu-
lting from the (k—1)-th image doublet. The complex
potential W’ for these two doublets may become

1 1
e T
z+1Sk71 z—-1Sk

W= (5
In order to meet the condition that the original
doublet has to become circular, the following con-
dition may be satisfied:

QE;ZO on r=a (6)

where @ is the velocity potential in W= +i¥’.
By using the relation of z=r(cos8+isinf) and by
substituting Eq. (5) into Eq. (6), the following recur-
rent expressions for Sx and W, may be obtained,
respectively:

aZ

=q-— 7
S=S STS., @]
= '1(~S+Sk_1 ) ®)

For the sake of efficient calculation, a parameter
ax is defined as follows:

S”‘Sk _ a _ 1
a S+ Sk..1 ZS/a—qk..l

Q= - =0 )

where S=S,, and the strength p, of the k-th doublet
can be obtained.

M= M1 Q= oG o+ @’ = UaX(qi g+ qu)?
=Ua’ my m=(q° Q- quf, mo=1 (10

By substituting Eq. (9) and Eq. (10) into Eq. (4),
the interesting complex potential can be obtained.

w© 1 1
W="Ua? + 11
a k;, mk(Z—i(S—an) z+i(S—aqk))( )
1
= o=0;
ks 2S/a—qe-, 4

me=(qi* Qg me=1

The forces acting on the surface of a circular
cylinder in an unsteady irrotational flow may be
expressed as the Blasius theorem:

[P .1 [fogW\

F:F"—IFY_—IWC_(;{dZ+IEP,‘£<§)dz (12)
where z=x+1y and z=x—1y. Before performing the
integration of the first term of the right hand side
in Eq. (12), it is necessary to calculate g®/gt by
using Eq. (11).
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=L s _u< L 1
2 (& ot \z—i(S—aqy) z+i(S—aqy
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T HiS—aq | Z=iS—aq) ) =

Because the integration of Eq. (12) is performed
on the surface of the original doublet, it is necessary
to use the relation of z—iS=a(cosf+isinf) and z-

=a(cosf+isinf) in Eq. (13), where a is the radius
of the original doublet. By using the following rela-
tion,

J’ n__con(nx)-dx _ (na“/(l—az) when a’<1
o 1—2acosx+a? \m/[(1—a%a"] when a2>1

(14)

the first term of Eq. (12) can be calculated as fol-
lows:

—ip}%(tgdf——npz oM | 1+ ! )

5 at\ (2S/a—q)

—npa = Z (14 g+ Hmy (15)

which is equal to Fy in Eq. (12). Since F,=pCwuna’
oU/ot in the oscillating cylinder(instead of C;, refe-
rence Eq. (1)), the added mass coefficient Cy can
be obtained by comparison of Eq. (15).

Cv= Q. (1+qu-Im=1+2 Y m, (16)
k=0 k=1

In order to integrate the second term of the right
hand side in Eq. (12), it is necessary to calculate
(0W/ot)* by using Eq. (11) as follows:

-
ot
4282 —SP)
(Z—1SHZ+iSANZ*— i8Sz +iSP)

17)

and it is useful to employ the residue theorem in
order to perform the integration. If an analytic fun-

ction has many singular points z(j=1,2,---,n) inside
a closed path, then
§ f(z)dz=2ni Z Res f(z) (18)

i= z=7j

If f(z) has a pole of m-th order at z=z,, the residue
is given as follows:

dm =1
Res MO~ (m—11 (~ggrrie=mrio))
(19)

Therefore, by using Eq. (18) and Eq. (19) the second
term of Eq. (12) can be calculated:

1—-p 4; < >dz—14rer2a4 i i

k=0 j=0

my 1y
— 20
(2S—aqc—aqy)’ (20)
which is equal to —F,. Since F,=0.5pC, D UD=

2a) in Eq. (12), the lift force coefficient C; can be
obtained by comparison of Eq. (20).

—4n i i 1 M
=0 k=

Je

On the other hand, Yamamoto et al. (1974) deri-
ved an analytic solution of the forces acting on a
circular cylinder near the bottom boundary, where
the lift force coefficient C. and the inertia force
coefficient Cy are expressed as follows:

eay)

0 fs] m_] mg
-S>
Z kgo 5 i S>a (22)
(= -a-a)
Cu=1+2 i m;? 23)

=1

The lift force coefficient(CL) calculated in this
study is the same as that of Yamamoto et al. (1974),
while the added mass coefficient(Cy) is different
from that of Yamamoto et al. (1974). The calculated
C. and Cy are shown in Fig. 2 and Fig. 3, respecti-
vely. The 900 image doublets were used to calculate
C. in Eq. (21) and Cy in both Eq. (16) and Eq.
(23). The lift force calculated in the potential flow
results from the difference of the pressure acting
on the surface of the cylinder, and is proportional
to U% Cy in Fig 2 successfully simulates the tende-
ncy of the behavior of the lift force coefficient on
a circular cylinder submerged in an ideal flow.
When ¢/D=1 where D is the diameter of the cylin-
der and e (=S—D/2 in Fig. 1) is the distance bet-
ween the bottom boundary and the lowest surface

of the cylinder, the lift force coefficient C;=
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Fig. 2. Lift Force Coefficient (Cyp).

0
0.

—0.06186=0 can be calculated. Therefore, the effect
of the bottom boundary may be neglected in calcu-
lating the lift force when e/D21. As ¢/D decreases,
C. increases because of the increasing velocity bet-
ween the cylinder and the bottom boundary, which
means the existance of relatively lower pressure dis-
tribution on the lower surface of the cylinder. Since
C. is calculated as negative in the above case, the
direction of the lift force is downward. When /D=
0, that is, the cylinder is located on the bottom
boundary, Cp=+449%(=(m*+3n)/9) can be calcula-
ted based on von Muller (1929)'s analytic solution,
which means that the direction of the lift force is
upward because there is no flow between the cylin-
der and the bottom boundary.

The inertia force is proportional to the accelera-
tion gU/gt, and the added mass coefficient Cy is
shown in Fig. 3. As e/D decreases, Cm increases
because of the bottom boundary (in this case the
acceleration increases between the cylinder and the
boundary). When e/D =0, that is, a cylinder is loca-
ted on the bottom boundary, Cu=229 can be ob-
tained. When the cylinder is located at e/D=1,
Cm—=1.05724=1, which is equivalent to the result
obtained from the potential flow analysis of the for-
ces acting on an oscillating circular cylinder where
the effects of the bottom boundary are neglected.
Therefore, the effects of the bottom boundary may
be neglected in the case that e/D=1. On the other
hand, Cy=2 was calculated in the case of the solu-
tion of Yamamoto et al. (1974) when ¢/D=1. This

3.0

This Study

Yamamoto et al 1974

1.0

0.5

0.0 ——— 7 ———
00 01 02 03 04 05 06 07 08 09 10
e/D

Fig. 3. Added Mass Coefficient (Cw).

fact shows that the tendency of the behavior of Ya-
mamoto et al. (1974)'s Cy is not appropriate because
Cu=1 is calculated approximately when e/D=1.

4. CONCLUSION

The analytic solution of the forces acting on a
cylinder affected by the bottom boundary is re-deri-
ved using the complex potential. Through the com-
parison of the re-derived analytic solution with the
results of Yamamoto et al. (1974), the re-derived lift
force coefficient Cy is identical with that of Yama-
moto et al (1974). But the re-derived added mass
coefficient Cy is different from that of Yamamoto
et al. (1974), while it simulates the tendency of the
behavior of Cy successfully. If the effect of the bot-
tom boundary is neglected in the analysis of the
potential flow, C,=0 and Cu=1 are calculated
analytically for a circular cylinder. When /D21
where D is the diameter of the cylinder and e is
the distance between the bottom boundary and the
lowest surface of the cylinder, the effects of the bot-
tom boundary on the lift force and the inertia force
can be neglected because the calculated C, and Cy
are approximately 0 and 1, respectively.
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