THE SYMBOLIC DYNAMICS OF THE TENT MAP

KYE YOUNG LEE AND SEUNG KAB YANG MYONGJI UNIVERSITY

1. Introduction

In 1987, E. W. Hobson [2] called the triangle T' formed from the feet of the altitudes of a triangle T the *pedal triangle*. Recently J. G. Kingston and J. L. Synge [3] revisited and corrected Hobson's work and, for example, determined a criterion for some pedal iterate of T to have the same angles as T.

In 1993, J. C. Alexander [1] revisited the issue again from a different mathematical point of view, which makes it routine to understand the behavior of the angles of successive pedal triangles. For each triangle T, we assign a label E(T) that makes the behavior under the iterated pedal map obvious. Equally important, there is a straightforward way of determining the angles of the triangle from its label. More precisely, consider all infinite sequence $a_1a_2a_3\cdots$ of four symbols, say each a_i equals 0,1,2 or 3. Every triangle T is labelled with one such sequence E(T), and two triangles are labelled with the same sequence if and only if they are similar. Moreover, if $E(T) = a_1a_2a_3\cdots$, then $E(T') = a_2a_3a_4\cdots$ obtained by erasing the first symbol in E(T). Then if for example, $013013013\cdots$ (infinitely repeating) is the label of a triangle T, it is clear that the third pedal iterate of T is similar to T.

J. C. Alexander [1] showed that almost all labels correspond to a triangle, and he also gave an algorithm to find the triangle from its label.

This type of labelling is the subject of *symbolic dynamics*, which is quite powerful when it works.

In this paper, we study the symbolic dynamics of the tent map (see 2-2 for detailed definitions). And we show that all labels correspond to a point in I = [0,1], and we give a coding algorithm to find the point in I from its label.

We have the following main results.

THEOREM 3.1.1. There exists an encoding for the tent map.

THEOREM 3.2.1. There exists a decoding for the tent map.

THEOREM 3.3.1. The number of periodic points of prime period n under the tent map is $2^n - 2$.

THEOREM 3.3.4. There exists a point $x \in I$ such that the orbit $\{f^n(x)\}$ is dense in I.

2. Preliminaries

Let $f: X \to X$ be a continuous function from a space X into itself. For each positive integer n, f^n denotes n-th iterate of f, that is, f^0 is the identity and $f^{n+1} = f \circ f^n$ for each $n \ge 1$. A point $x \in X$ is called a *periodic point* of f if $f^n(x) = x$ for some positive integer n. In this case, the least such n is called the period of x. A point $x \in X$ is called an eventually periodic point of f if there exists a positive integer n such that $f^n(x)$ is periodic. A point $x \in X$ is called a fixed point if f(x) = x, that is, x is a point of period one. The orbit of x is the set $\{f^k(x)|k=1,2,\cdots\}$, and denoted by Orb(x).

2-1. Symbolic Dynamics

Consider the n symbols, namely $0, 1, 2, 3, \dots, n-1$.

Out of these we form infinite words $a = a_1 a_2 a_3 \cdots$, where each a_i is one of the symbols $0, 1, 2, 3, \cdots, n-1$. The set of all such words is called the sequence space S_n on the n symbols.

There is a transformation G on S_n , namely the *shift* on n symbols:

$$G: a_1a_2a_3\cdots \mapsto a_2a_3a_4\cdots$$

We use the standard notation $\overline{a_1 a_2 a_3 \cdots a_r}$ to mean the infinitely repeating word $a_1 a_2 a_3 \cdots a_r a_1 a_2 a_3 \cdots a_r a_1 a_2 a_3 \cdots a_r \cdots$.

More generally, $a_1 a_2 a_3 \cdots a_k \overline{a_{k+1} a_{k+2} a_{k+3} \cdots a_{k+r}}$ denote the word

$$a_1 a_2 a_3 \cdots a_k a_{k+1} a_{k+2} a_{k+3} \cdots a_{k+r} a_{k+1} a_{k+2} a_{k+3} \cdots a_{k+r} \cdots$$

that is eventually periodic under the shift.

Let $f: X \to X$ be a function from a set X into X. To represent f by the shift G on n symbols means to assign to each $x \in X$ a word $E(x) \in S_n$ so

that $G \circ E = E \circ f$. Then such an assignment E is called the *encoding* for f. The encoding of f(x) is the shift of the encoding of x.

The opposite process $D: S_n \to X$ of a assigning an element of X to each word is called the *decoding* for f. To clarify all this abstraction, we present an example. Consider the set X of reals x, $0 \le x < 1$ with the transformation $f(x) = 2x \pmod{1}$.

We find an encoding E. Write any $x \in X$ in binary notation

$$x = .x_1x_2x_3 \cdots$$
, each $x_i = 0$ or 1.

Then f(x) has the binary representation $f(x) = .x_2x_3x_4 \cdots$ (multiply by 2 (= 10 in binary) and drop the integral part).

Thus the encoding E that takes x to its string of binary digits represents f as the shift on 0 and 1. It is simple to decode, that is, go from a word $x_1x_2x_3\cdots$ to the represented number:

$$D(x_1x_2x_3\cdots)=x=\sum_{i=1}^{\infty}\frac{x_i}{2^i}.$$

Note that the two sequences $.x_1x_2\cdots 0_k\overline{1}$ and $.x_1x_2\cdots 1_k\overline{0}$ are binary representations of the same number. We choose one of them satisfying our purpose.

2-2. The tent map

For I = [0,1], the tent map $f: I \to I$ is a continuous function defined by

Figure 1.

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} \\ 2(1-x) & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

Consider the tent map $f: I \to I$. Write any $x \in I$ in a binary notation

$$x = .x_1x_2x_3 \cdots$$
 where $x_i = 0$ or 1.

If $x_1 = 0$, then $0 \le x \le \frac{1}{2}$. Hence f(x) has a binary representation $f(x) = .x_2x_3x_4 \cdots$ as the example in the previous section shows.

Suppose $x_1 = 1$. In this case, if $x_2 = x_3 = x_4 = \cdots = 0$ then $x = \frac{1}{2}$. We can write $\frac{1}{2} = .0\overline{1}$ and we know that $f(\frac{1}{2}) = 1 = .\overline{1}$. If some of x_n is not zero for $n \ge 2$, then $\frac{1}{2} < x \le 1$. In this case, f(x) has a binary representation $.(1-x_2)(1-x_3)(1-x_4)\cdots$.

By combining the above results, we conclude that f(x) has a binary representation

$$f(x) = \begin{cases} .x_2 x_3 \cdots & \text{if} \quad x_1 = 0 \\ .x_2' x_3' \cdots & \text{if} \quad x_1 = 1, \end{cases}$$

where $x_i' = (1 - x_i)$, the complement of x_i

3. Coding Algorithms for the Tent Map

In this section, we investigate an encoding algorithm of a point x and decoding algorithm of a word a for the tent map.

3-1. An encoding algorithm

Let $f: I \to I$ be the tent map. We construct an encoding with the binary representation of a point $x \in I$ for the tent map f. Now we define subinterval I_i of I by $I_1 = [0, \frac{1}{2}]$ and $I_2 = (\frac{1}{2}, 1]$.

For each $x \in I$, the label of x with respect to f is the infinite sequence $a_1 a_2 a_3 \cdots$, where a_i is the interval label of the n-th iterate of f, that is, the word of x with respect to f is the infinite sequence $a_1 a_2 a_3 \cdots$ defined by $a_n = i$ if and only if $f^{n-1}(x) \in I_i$ (i = 1 or 2) for each $n = 1, 2, 3, \cdots$.

It is convenient to string them together to form an infinite word

$$a=a_1a_2a_3\cdots$$
.

For $x \in I$, the word of f(x) is the shift sequence $a_2 a_3 a_4 \cdots$ obtained by erasing the first symbol of the word a of x.

To algorithmically encode points of I, at first, we write any point $x \in I$ in binary notation $x = .x_1x_2 \cdots$, where $x_1x_2 \cdots$ is a string of 0's and 1's.

The first digit a_1 of the sequence for x is determined as follow:

If $x_1 = 0$ then $x \in I_1$, $a_1 = 1$. Let $x_1 = 1$. If $x_2 = x_3 = \cdots = 0$, then $x = \frac{1}{2} \in I_1$ and $a_1 = 1$. Therefore if we set $\frac{1}{2} = .0\overline{1}$, then the encoding algorithm for $x = \frac{1}{2}$ is the same as the case $x_1 = 0$. If one of x_n 's $(n \ge 2)$ is not zero, then $x \in I_2$ and $a_1 = 2$. Therefore we conclude that by putting $.0\overline{1}$ instead of $.1\overline{0}$ for the binary representation of $\frac{1}{2}$, the first digit a_1 of the sequence for $x = .x_1x_2\cdots$ is determined by

(*)
$$a_1 = \begin{cases} 1 & \text{if } x_1 = 0 \\ 2 & \text{if } x_1 = 1. \end{cases}$$

To determine the second digit a_2 in the encoding of $x = .x_1x_2x_3 \cdots$, we consider the following binary representation of f(x):

$$f(x) = \begin{cases} x_2 x_3 \cdots & \text{if} \quad x_1 = 0 \\ x_2' x_3' \cdots & \text{if} \quad x_1 = 1, \end{cases}$$

where $x_i' = (1 - x_i)$, the complement of x_i .

Now, as the above method (*) we give the second digit a_2 as follows:

$$a_2 = \begin{cases} 1 & \text{if} & x_2 \ (or \ x_2') = 0 \\ 2 & \text{if} & x_2 \ (or \ x_2') = 1. \end{cases}$$

Continuing this process, we can obtain the word $a = a_1 a_2 a_3 \cdots$ for given any point $x \in I$.

As an immediate consequence of the above encoding algorithms, we have the following theorem.

THEOREM 3.1.1. There exists an encoding E for the tent map f, that is the following diagram

$$\begin{array}{ccc}
I & \xrightarrow{f} & I \\
E \downarrow & & \downarrow E \\
S_2 & \xrightarrow{G} & S_2
\end{array}$$

is commutative.

EXAMPLE 1. Starting with a point $\frac{1}{8}$ in binary notations $0.001\overline{0}$. However, we will use the same number $0.000\overline{1}$ instead of $0.001\overline{0}$.

Since $x_1 = 0$, we have $a_1 = 1$. Also since $x_1 = 0$, we know that $x_2x_3x_4 \cdots = .00\overline{1}$. Hence $a_2 = 1$. By the same process $a_3 = 1$ and $a_4 = 2$. Now since $x_4 = 1$, we rewrite the sequence $x_1x_2x_3x_4x_5 \cdots$ by $.0001\overline{0}$. And we know that $x_i = 0$ for all i > 4, hence we have the digits $a_5 = a_6 = \cdots = 1$. Thus the word of $\frac{1}{8}$ is $a = 1112\overline{1}$. Note that the n-th iterates of this point $\frac{1}{8}$ are

$$x = \frac{1}{8} \in I_1, \ f(x) = \frac{2}{8} \in I_1, \ f^2(x) = \frac{4}{8} \in I_1, \ f^3(x) = 1 \in I_2, \ f^4(x) = 0 \in I_1, \cdots$$

EXAMPLE 2. $a = 1\overline{111222222}$ is the word of $\frac{15}{365}$.

3-2. A decoding algorithm

To algorithmically decode a word, we go backwards through the encoding process in the previous section 3-1. It is straightforward to see that this leads to the following decoding algorithm.

A: Given a word $a = a_1 a_2 a_3 \cdots$, for each digit a_i , associate a digit $x_i^{(1)}$ as follows:

$$x_i^{(1)} = \begin{cases} 0 & \text{if} \quad a_i = 1\\ 1 & \text{if} \quad a_i = 2. \end{cases}$$

Concatenate these together to form an infinite sequence

$$P_1 = 0.x_1^{(1)}x_2^{(1)}x_3^{(1)}\cdots$$

B: Inductively obtain a sequence

$$P_i = 0.x_1^{(i)}x_2^{(i)}x_3^{(i)}\cdots.$$

To obtain P_{i+1} from P_i , we consider the *i*-th element $x_i^{(i)}$ of P_i . If $x_i^{(i)} = 0$, then $x_j^{(i+1)} = x_j^{(i)}$ for each $j = 1, 2, 3 \cdots$, that is, $P_{i+1} = P_i$. If $x_i^{(i)} = 1$, then we put

$$x_j^{(i+1)} = \begin{cases} x_j^{(i)} & \text{if } j \neq i+1\\ 1 - x_j^{(i)} & \text{if } j = i+1. \end{cases}$$

C: Note that $x_j^{(i+1)} = x_j^{(i)}$, for $j \leq i$. Thus there is a limit, which we denote

$$P=0.x_1x_2x_3\cdots$$

D: The point is determined by evaluating the binary expansions of the sequence.

As an immediate consequence of the above decoding algorithm, we obtain the following theorem

THEOREM 3.2.1. There exists a decoding $D: S_2 \to I$ for the tent map f, that is, the following diagram

$$\begin{array}{ccc}
I & \xrightarrow{f} & I \\
D \uparrow & & \uparrow D \\
S_2 & \xrightarrow{G} & S_2
\end{array}$$

is commutative.

EXAMPLE 3. Starting with the word $a = 212\overline{21}$.

According to our decoding algorithm we obtain the sequence $P_1 = 101\overline{10}$.

$$P_2 = 111\overline{10}, \quad P_3 = 1\overline{10}, \quad P_4 = 1\overline{10}, \quad P_5 = 11011\overline{10},$$
 $P_6 = 110110\overline{01}, \quad P_7 = 110110\overline{01}, \quad P_8 = 110110\overline{01}, \quad P_9 = 110110011\overline{10},$
 $P_{10} = 1101100110\overline{01}, \quad P_{11} = 1101100110\overline{01}, \quad P_{12} = 1101100110\overline{01}, \cdots$

After proceeding this sequence we end up with the limit sequence

$$P = 110\overline{1100}.$$

Evaluating these binary expantions (by summing geometric series), we find that this word corresponds to the point $\frac{102}{120}$.

Note that the *n*-th iterates of the point $\frac{102}{120}$ is

$$x = \frac{102}{120} \in I_2 \quad f(x) = \frac{36}{120} \in I_1 \quad f^2(x) = \frac{72}{120} \in I_2 \quad f^3(x) = \frac{96}{120} \in I_2$$
$$f^4(x) = \frac{48}{120} \in I_1 \quad f^5(x) = \frac{96}{120} \in I_2 \quad f^6(x) = \frac{48}{120} \in I_1, \dots$$

EXAMPLE 4. Starting with a word $a = 1\overline{111222222}$. Then we have the limit $P = \overline{000010101}$, so the word a represents the point $\frac{15}{365}$.

3-3. Some properties of the Tent map

In this section, we show that the decoding map is uniformly continuous, and prove that there exists a point $x \in I$ such that the orbit $\{f^n(x)\}$ is dense in I.

THEOREM 3.3.1. Let n be a prime number. Then the number of words with period n is exactly $2^n - 2$. Therefore, the number of periodic points of prime period n under the tent map is $2^n - 2$.

EXAMPLE 3. The number of words of period 3 is 6.

In fact,

$$a^1 = \overline{112}$$
 $a^2 = \overline{121}$ $a^3 = \overline{211}$
 $a^4 = \overline{212}$ $a^5 = \overline{221}$ $a^6 = \overline{122}$

Note that the words $a^1, a^2, a^3, a^4, a^5, a^6$ represent the numbers $\frac{14}{63}, \frac{28}{63}, \frac{56}{63}, \frac{6}{7}, \frac{4}{7}, \frac{2}{7}$ respectively.

Now we define a metric d on the sequence space S_2 by

$$d(a_1 a_2 a_3 \cdots, b_1 b_2 b_3 \cdots) = \sum \frac{|a_i - b_i|}{2^i},$$

where $a_1a_2a_3\cdots,b_1b_2b_3\cdots\in S_2$. Then d is a well-defined metric on S_2 and $G:S_2\to S_2$ is continuous.

LEMMA 3.3.2. The decoding map $D: S_2 \to I$ is uniformly continuous.

Proof Let $\epsilon > 0$ be given. Take N such that $\sum_{N+1}^{\infty} \frac{1}{2^n} < \epsilon$. And let $\delta = 2^{-N}$. Now we consider two words $a = a_1 a_2 a_3 \cdots$ and $b = .b_1 b_2 b_3 \cdots$ in the sequence space S_2 on two symbols. Then we know that

$$d(a,b) = \sum_{k=1}^{\infty} \frac{|a_k - b_k|}{2^k} < 2^{-N} = \delta.$$

Then $a_i = b_i$ for all $i \leq N$.

Since D is a decoding map, $D(a) = \sum_{n=1}^{\infty} \frac{x_n}{2^n}$ and $D(b) = \sum_{n=1}^{\infty} \frac{y_n}{2^n}$. Then we know that $x_n = y_n$ for $n \leq N$. Hence

$$|D(a) - D(b)| = \left| \sum_{n=1}^{\infty} \frac{x_n}{2^n} - \sum_{n=1}^{\infty} \frac{y_n}{2^n} \right|$$

$$= \left| \sum_{n=1}^{\infty} \frac{x_n - y_n}{2^n} \right|$$

$$\leq \sum_{n=N+1}^{\infty} \frac{|x_n - y_n|}{2^n}$$

$$\leq \sum_{n=N+1}^{\infty} \frac{1}{2^n} < \epsilon.$$

Thus the decoding map D is uniformly continuous.

But the encoding map E is not continuous.

LEMMA 3.3.3. Let $f: I \to I$ be the tent map and $x \in I$. If $\{G^n(E(x))\}$ is dense in S_2 , then $f^n(x)$ is dense in I.

Proof Suppose that $\{G^n(E(x))\}$ is dense in S_2 for some $x \in I$. Let $\epsilon > 0$. Since D is uniformly continuous, there exists a $\delta > 0$ such that $d(a,b) < \delta \Rightarrow d(D(a),D(b)) < \epsilon$. Let $y \in I$. Then by hypothesis, there exists n such that $d(G^n(E(x)),E(y)) < \delta$. By Theorem 3.1.1 and Theorem 3.2.1, there exist encoding map E and decoding map D such that $f = D \circ G \circ E$. By inductively, we know $f^n = D \circ G^n \circ E$, hence we have

$$d(f^n(x), y) = d(D(G^n(E(x))), D(E(y))) < \epsilon.$$

THEOREM 3.3.4. There exists a point $x \in I$ such that the orbit $\{f^n(x)\}$ is dense in I.

Proof First we will show that there is a word a such that $\{G^n(a)\}$ is dense in S_2 . We take all strings of length 1, length 2, length $3, \dots$, and concatenate them together. Then we obtain a word

$$a = 1 \setminus 2 \setminus 11 \setminus 12 \setminus 21 \setminus 22 \setminus 111 \setminus 112 \setminus 121 \setminus 122 \setminus 211 \setminus 212 \setminus 221 \setminus 222 \cdots$$

We can easily show that for any finite sequence $a_1a_2a_3\cdots a_n$ there exists a positive integer m such that $G^m(a)=a_1a_2a_3\cdots a_n\cdots$.

Let $b=b_1b_2b_3\cdots$ be a sequence in S_2 and $\epsilon>0$ be given. Then we can take a positive integer k such that $\sum_{n=k+1}\frac{1}{2^n}<\epsilon$. Then there exists a positive integer m such that $G^m(a)=b_1b_2b_3\cdots b_na_{m+n+1}\cdots$ with $d(G^m(a),b)<\sum_{n=k+1}\frac{1}{2^n}<\epsilon$.

This means that $\{G^n(a)\}$ is dense in S_2 . By Lemma 3.3.3, the orbit $\{f^n(D(a))\}$ is dense in I.

REFERENCES

- [1] J. C. Alexsander, The symbolic dynamics of the sequence of the pedal triangles, Amer. Math. Magazine 66 (1993), 149-158.
- [2] E. W. Hobson, A treatise on plane geometry, Cambridge University Press, New York (1987).
- [3] J. G. Kingston and L. Synge, The sequence of pedal triangles, Amer. Math. Monthly 95 (1988), 609-622.