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THE SYMBOLIC DYNAMICS OF THE TENT MAP
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1. Introduction

In 1987, E. W. Hobson [2] called the triangle 7' formed from the feet of the
altitudes of a triangle T the pedal triangle. Recently J. G. Kingston and J. L.
Synge [3] revisited and corrected Hobson’s work and, for example, determined a
criterion for some pedal iterate of T to have the same angles as T .

In 1993, J. C. Alexander [1] revisited the issue again from a different mathemat-
ical point of view, which makes it routine to understand the behavior of the angles
of successive pedal triangles. For each triangle T, we assign a label E(T') that
makes the behavior under the iterated pedal map obvious. Equally important,
there is a straightforward way of determining the angles of the triangle from its
label. More precisely, consider all infinite sequence ajasas--- of four symbols, say
each a; equals 0,1,2 or 3. Every triangle T is labelled with one such sequence
E(T), and two triangles are labelled with the same sequence if and only if they are
similar. Moreover, if E(T) = ajazaz--- , then E(T') = asazay--- obtained by
erasing the first symbol in E(T) . Then if for example, 013013013--- (infinitely
repeating) is the label of a triangle T, it is clear that the third pedal iterate of
T is similar to T.

J. C. Alexander [1] showed that almost all labels correspond to a triangle, and
he also gave an algorithm to find the triangle from its label.

This type of labelling is the subject of symbolic dynamics, which is quite pow-
erful when it works.

In this paper, we study the symbolic dynamics of the tent map ( see 2-2 for
detailed definitions). And we show that all labels correspond to a point in I =
[0,1] , and we give a coding algorithm to find the point in I from its label.

We have the following main results.
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THEOREM 3.1.1. Tlhere exists an encoding for the tent map.
THEOREM 3.2.1. There exists a decoding for the tent map.

THEOREM 3.3.1. The number of periodic points of prime period n under the
tent map is 2" — 2.

THEOREM 3.3.4. There exists a point ¢ € I such that the orbit {f*(z)} is
dense in I.

2. Preliminaries

Let f : X — X be a continnous function from a space X into itself. For each
positive integer n, f™ denotes n-th iterate of f, that is, f° is the identity and
frt! = fo f" for each n > 1. A point * € X is called a periodic point of f if
f™(x) = z for some positive integer n. In this case, the least such n is called the
pertod of . A point £ € X is called an eventually periodic point of f if there exists
a positive integer n such that f"(z) is periodic. A point ¢ € X is called a fized
point if f(xr) = x, that is, # is a point of period one. The orbit of 7 is the set
{f¥(z)|k = 1,2,---}, and denoted by Orb(z).

2-1. Symbolic Dynamics

Consider the n symbols, namely 0,1,2,3,--- ,n—1.

Out of these we form infinite words a = ajajasz---, where each a; is one of
the symbols 0,1,2,3,--- ,n —1. The set of all such words is called the sequence
space S, onthe n symbols.

There is a transformation G on S, , namely the shift on n symbols:
G:alazag---Ha2a3a4--- .

We use the standard notation @yaza; - - @, to mean the infinitely repeating
word a1a90a3 -+ ArQ102aQ3 * +* ArG1A2A3 * Ay + ** .
More generally, ayazas - - - aGrr1k+20k+3 - - Gk+r denote the word

a1020a3 * - QROp 41Ok 420843 " Ok prQp 410k 42 QL 43 " " Al ©

that is eventually periodic under the shift.
Let f:X — X be afunction from a set X into X. To represent f by the
shift G on n symbols means to assign to each z € X a word E(z) € S, so
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that Go E = E o f . Then such an assignment E is called the encoding for f.
The encoding of f(x) is the shift of the encoding of =z.

The opposite process D : S, — X of a assigning an element of X to each
word is called the decoding for f. To clarify all this abstraction, we present an
example. Consider the set X of reals , 0 < 7 <1 with the transformation
f(z) = 2z(mod 1) .

We find an encoding E . Write any ¢ € X in binary notation

T =.ry719%3---, each ;=0 or 1.

Then f(x) has the binary representation f(x) = .xzr3x4--- (multiply by 2
(=10 in binary ) and drop the integral part).

Thus the encoding E that takes x to its string of binary digits represents
f as the shift on 0 and 1. It is simple to decode, that is , go from a word
T1T2r3--- to the represented number :

lH

D(xlxzm3-..)=z=z
=1

(S~

Note that the two sequences .z 2 - --0x1 and .z1z2 - - - 140 are binary representa-
tions of the same number. We choose one of them satisfying our purpose.

2-2. The tent map
For I =[0,1], the tent map f:I — I isa continuous function defined by

i

1

3 % PR

Figure 1.
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flr) = 1
2(1—x) if -2-<.17§1.

Consider the tent map f:I — I. Write any = € I in a binary notation

T =.riT9T3--- where ;=0 or 1.
If z; =0, then 0 < r < % Hence f(x) has a binary representation
f(x) = .rex3z4 -+ as the example in the previous section shows.
Suppose z; = 1. In this case, if @y =23 =24 =--- =0 then o = i— We
can write % = .01 and we know that f( ;—) =1=.1 If some of x, is not

zero for n > 2, then —é— < x < 1. In this case, f(x) has a binary representation
(1 - Tz)(l - ’03)(1 - (l'4)' .
By combining the above results, we conclude that f(z) has a binary represen-
tation )
NOLY if .’E1=0

flz) = { xpxy - if oz =1,

where z! = (1 - z;), the complement of z;.

3. Coding Algorithms for the Tent Map

In this section, we investigate an encoding algorithm of a point = and decoding
algorithm of a word a for the tent map.

3-1. An encoding algorithm

Let f:I — I be the tent map. We construct an encoding with the binary
representation of a point x € I for the tent map f. Now we define subinterval
Ii of I by Iy =[0,%] and I, =(3.1].

For each z € I, the label of = with respect to f is the infinite sequence
ajagaz--- , where a; is the interval label of the n-th iterate of f, that is, the
word of z with respect to [ 1is the infinite sequence ajazas--- defined by
ap =1 ifandonly if f™ Yz)e; (i=1 or 2)foreach n=1,2,3,---.

It is convenient to string them together to form an infinite word

a = aazdg--- .
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For z € I, the word of f(x) is the shift sequence agasay--- obtained by
erasing the first symbol of the word @ of =z.
To algorithmically encode ponits of I, at first, we write any point z € I in

binary notation = = .t;ry---, where xyry--- is a string of 0's and 1’s.

The first digit a; of the sequence for = is determined as follow:

If 24 =0 then v €, ay =1. Let z; =1. If 79 = 23 = --- = 0, then
T = % € I; and a; = 1. Therefore if we set -;- = .01, then the encoding algorithm

for # = 1 is the same as the case v, = 0. If one of «,’s (n > 2) is not zero
2 i k]

then z € I and a; = 2. Therefore we conclude that by putting .01 instead

of .10 for the binary representation of %—, the first digit a; of the sequence for
r =.r1x2--- is determined by
, 1 if ;=0
(*) ay = { . '
2 if =z =1.
To determine the second digit «, in the encoding of @ = .xya32v3--- , we
consider the following binary representation of f(z) :
_w2 2’3 “ e if ml = 0
o ={ T
.x2m3"‘ lf $1 =1,

where z) = (1 — z;), the complement of =z;.
Now, as the above method (*) we give the second digit a, as follows :

{1 if 3 (orzh)=0

az = .

2 if zy (orzy)=1.

Continuing this process, we can obtain the word a = ajazaz--- for given any
point z € I.

As an immediate consequence of the above encoding algorithms, we have the
following theorem:.

THEOREM 3.1.1. There exists an encoding E for the tent map f, that is
the following diagram

[ —— T
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is commutative,

EXAMPLE 1. Starting with a point % in binary notations 0.0010. However, we
will use the same number 0.0001 instead of 0.0010.

Since 7, =0, we have a; = 1. Also since r; = 0, we know that .vor374--- =
.001. Hence a; = 1. By the same process a3 = 1 and a4 = 2. Now since
z4 = 1, we rewrite the sequence .x;xoz32425 -+ by .00010. And we know that
z; = 0 for all 7 > 4, hence we have the digitsas = ag = --- = 1. Thus the word of

é— is @ = 11121. Note that the n-th iterates of this point % are

1 2 4
z=-8-€I1, f(a:)=-§€I1, f2(m)=-8-611, fAley=1€ I, ff(r)=0€1,---

EXAMPLE 2. a = 1111222222 is the word of 3—16%.
3-2. A decoding algorithm
To algorithmically decode a word, we go backwards through the encoding pro-

cess in the previous section 3-1. It is straightforward to see that this leads to the
following decoding algorithm.

A: Given aword a = ajaqas - -, for each digit a;, associate a digit xEl) as follows:
(1) { 0 if a; = 1
r, = )
1 if a;=2.

Concatenate these together to form an infinite sequence
P, = O.xgl)mgl)xgl) S
B: Inductively obtain a sequence

P; = O.xgi):cgi)xgi)

To obtain P;y; from P;, we consider the i-th element xf—i) of P;.
If xg') = 0, then a:§-'+l) = :vg-') for each 7 =1,2,3--- ,thatis, Piy; = P. If
xﬁl) =1, then we put

20 A+
1-2) i j=i+l
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C: Note that :v(J-i+l) = :rg-i), for j < i. Thus there is a limit, which we denote

P=0.zyz023--

D: The point is determined by evaluating the binary expansions of the sequence.

As an immediate consequence of the above decoding algorithm, we obtain the
following theorem

THEOREM 3.2.1. There exists a decoding D : S; — I for the tent map f,
that is, the following diagram

f

I —— T

o o

Sy —— 5,
G

is commutative.

EXAMPLE 3. Starting with the word a = 21221.
According to our decoding algorithm we obtain the sequence P; = 10110.

P, = 11110, P; =110, P, =110, Ps = 1101110,
Ps = 11011001, P; =11011001, Ps= 11011001, P, =11011001110,
Pyy = 110110011001, P;; = 110110011001, Py, = 110110011001, --

After proceeding this sequence we end up with the limit sequence

P ]

P =1101100.

Evaluating these binary expantions ( by summing geometric series), we find

: s . 102
that this word corresponds to the point 3.
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Note that the n-th iterates of the point % is
102 36 2 72 3 96
- — r)= — T= —— I r) = — I
z 120€Iz f(x) 120611 (=) o0 € 12 fx) 120 € L2
48 J6 48
4.y _ 20 5(p) = 20 6(p) = —on
filx) = Th () 0 €k (z) 120 € 11
EXAMPLE j. Starting with a word a = 1111222222, Then we have the limit
P = 000010101, so the word a represents the point -31—6-55-.

3-3. Some properties of the Tent map
In this section, we show that the decoding map is uniformly continuous, and
prove that there exists a point = € I such that the orbit {f*(z)} is densein I.

THEOREM 3.3.1. Let n be a prime number. Then the number of words with
period n is exactly 2® — 2. Therefore, the number of periodic points of prime
period n under the tent map is 2™ — 2.

EXAMPLE 8. The number of words of period 3 is 6.

In fact,
o'l =112 o? =121 a® =211
a* =212 o® =221 o® =122
Note that the words a',a?,a® a*,a%,a® represent the numbers 1 28 /58 5 4 2
respectively.
Now we define a metric d on the sequence space S; by
a: — b
d(ayazas - - - ,blf)zba ) = Z L’.zT_ﬂ’

where ajazaz--- ,b1byby--- € S3. Then d is a well-defined metric on S; and
G :S; — S; is continuous.

LEMMA 3.3.2. The decoding map D :S; — I is uniformly continuous.

Proof Let e¢>0 be given. Take N suchthat Y%, 5= <e. Andlet § =27V,
Now we consider two words a = ajazaz--- and b= .bbyb3--- in the sequence
space S; on two symbols. Then we know that

o |ai — b
d(a,b):Z—"—z-k—Ld—N:&.
k=1
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Then a;=0b; forall : < N. v
Since D is a decoding map, D(e) =3, _, 5 and D(b) =73} _, % Then
we know that z, =y, for n < N. Hence

|D(a) - D)l = |3 52~ 3 o
n=1

nxl

M et
2n

n=]1

ZL%_‘_M
211

n=N+1

IN

Thus the decoding map D is uniformly continuous.
But the encoding map E is not continuous.

LEMMA 3.3.3. Let f:I — I be the tent map and z € I. If {G"(E(z))} is
dense in S,, then f"(x) is densein I.

Proof Suppose that {G"(E(z))} is densein S; for some z € I. Let ¢ > 0.
Since D is uniformly continuous, there exists a é > 0 such that d(a,d) <
6 = d(D(a),D(b)) < e. Let y € I. Then by hypothesis, there exists n such
that d(G"(E(z)), E(y)) < 6. By Theorem 3.1.1 and Theorem 3.2.1, there exist
encoding map E and decoding map D such that f = DoGoE. By inductively,
we know f" =D oG"o E, hence we have

d(f"(x),y) = d(D(G™(E(2))), D(E(y))) < e.

THEOREM 3.3.4. There exists a point ¢ € I such that the orbit {f"(z)} is

dense in I.

Proof First we will show that there is a word a such that {G"(a)} is dense
in S;. We take all strings of length 1, length 2, length 3,---, and concatenate
them together. Then we obtain a word

a=1\2\11\12\21\22\ 111\ 112121\ 122\ 211\ 212\ 221\ 222--- .
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We can easily show that for any finite qequence ajazng - - ay, there exists a positive
integer m such that G™(a) = ajaza3---a, -

Let b= by bybs--- beasequencein Sz and €> 0 be given. Then we can take a
positive integer k such that Zn=k+1 5= < €. Then there exists a positive integer

m such that G™(a) = bybabs -+ - bua@mint1 -+ with d(G™(a),bd) < 3 2—17 < €.
n=k+1
This means that {G"(a)} isdensein S;. By Lemma 3.3.3, the orbit {f"(D(a))}

is dense in 1.
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