Journal of the Korea Society of Mathematical Education
Series A: Jun. 1994, Vol. 33, No. 1, 129-136

ON THE DISTRIBUTIVITY IN SUB(d)
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1. Introduction

Consider the class of monomorphism with common codomain d, for any object
d in a topos, denoted by Sub(d).

For any f and ¢ in Sub(d), defining an “inclusion” relation f C g, then (Sub(d),
Q) form a poset.

The following operations are defined on the Sub(d).

- : Sub(d) — Sub(d).

N : Sub(d) x Sub(d) — Sub(d).
U : Sub(d) x Sub(d) — Sub(d).
=> : Sub(d) x Sub(d) — Sub(d).

For any f, ¢ and h in Sub(d), f = (¢ N k) is monic isomorphic to the distribu-
tivity.

But f N (g = h) is not monic isomorphic to the distributivity, thus we show
that f N (g = h) is contained in it and the counter example of the reverse case is
constructed.

In any topos, f = ¢ is contained in —g = —f. We show that f = g is monic
isomorphic to —g = —f in Boolean topos.

Finally, we show (¢Nh) = f contains the distributivity and the counter example
is constructed for the reverse part.

2. Preliminaries
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DEFINITION 2.1. Given f:a - dandg:b— din a category Cweput f <g¢
if there is a C-arrow h : a — b such that f = goh

DEFINITION 2.2. Given f :a— d and g : b— d in a category C, f and g are
isomorphic subobjects if f < g, and g < f, denoted by f ~ ¢

DEFINITION 2.3. Sub(d)={[f]: f is a monic with cod f = d } where f :a — d

determines an equivalence class
[fl={g: f~g}

DEFINITION 2.5. An elementary topos is a category ¢ such that
(1) ¢ is finitely complete.
(2) ¢ is finitely co-complete.
(8) € has exponentiation.
(4) € has a subobject classifier.

EXAMPLE 2.6. Let M; = (2,-,1) where 2 = {0,1} and is defined by 1-1 =
1,1:0=0-1=0-0=0.
Then M, is a monoid with identity 1 in which 0 has no inverse.

The category of M;-Sets is a topos

In M3,Q = (Lq,w) when L; is the left ideals of M, and the action w : 2 x Ly —
L, defined by w(m,B) = {n:n €2 and n-m € B}
DEFINITION 2.7. Given f: a — d, the complement of f (relative to d) is the
subobject —f : —a — d whose character is — o xy, Thus —f is defined to be the
pullback of T along " o xy, yielding x—5 = — o xy
DEFINITION 2.8. The intersection of f : a — d and g : b — d is the subobject
fNg:anb— dobtained by pulling T back along x5 N xg = No < x5 N xg >.
Hence xsng = x5 N Xg- ’
LEMMA 2.9. In any topos ¢, if f : a — d and g : b — d have pullback then
a:c—d, wherea =g f' = f.g¢' has character Xy N X,
Thus xo = Xfng S0 a =~ f N g and there is a pullback of the form

aNb —— b

l L

a —— d

f
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Proof REF

DEFINITION 2.10. If ¢ is a topos with classifier T : 1 — Q, N : QX Q — is
the character in € of the product arrow < T, T >:1 — Q x Q. Hence

1 _ 1

<T,T>l J’T

AQxD —— Q

n

is a pullback.

DEFINITION 2.11. Ife¢ is a topos with classifier T:1 - Q, =: Q xQ — Q is
the character of € : C — 2 x Q0 where the latter is the equalizer of @ x @ =3 Q,N
being the conjunction truth arrow, and py the first projection arrow of the product

Q x Q.

LEMMA 2.12. (Sub(d),C) is a bounded lattice with unit I and zero Oy
Proof REF

LEMMA 2.13. For f :a — d, we have (f N ~f) ~ Oq4
Proof REF
DEFINITION 2.14. A Boolean algebra is a complemented distributive lattice.

DEFINITION 2.15. A topos is called Boolean if for every c-object d, (Sub(d),
C) is a Boolean algebra.

DEFINITION 2.16. Iff:a— dandg : b — d are subobject of d then
f = g:(a = b) — dis the subobject obtained by pulling T back along x5 =
Xg = (=0 <xf,Xg >)

Thus

1
a=> — 1

o E

d —— Q
Xf=Xg

is a pullback. i.e. Xf=g = (X5 = Xg)-
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3. Main Parts
LEMMA 3.1. In Sub(d), hC fNngif hC fandh Cyg

Proof Let h C fNg, where fNg:anNb—d, h:c—d, f:a—dandg:b—d.
By Definition, there exist k : ¢ — a N b such that (fNg)ok = h.
Consider ok and fok wherea:aNb—a, f:aNb— b, then fo(aok)="h
aud go (B ok)=h.

By a pullback. fNg=foa=gop.
Thus fo(aok)=(fNg)ok=h,go(Bok)=(fNg)ok=Nh.

Conversely let A C f and h C ¢g. By Definition, there exist m and n such that
fom=handgon=h.

By Definition, there exist a morphism ¢ : ¢ — a N b such that « 0 ¢ = m and
Bog=n. Thush =(fNg)ogq, since Bog=n and gon = h implies h = go(Boyg),
by pullback h = (fNg)oq.

LEMMA 3.2. In Sub(d), we have h C (f = ¢g)if fNh Cyg

Proof REF

PROPOSTION 3.3. {(f = ¢)N(f = h)} ~{f = (gnh)}

Proof REF

hold but the converse is false.

THEOREM 3.4. In Sub(d) (for any topos) {fN(g = h)} C {(fng) = (fOh)}

Proof We know that {gN(g = h)} C h, By the property of N, [fN{gN(g = h)}] C
(fnR), {(fNg)N(g = h)} C (fNh) is equivalent to [{(fNg)Nf}N(g = h)] S (fNA).

By LEMMA, {fn(g = k}) C {{(f Ng) = (f N h}) The counter example is
constructed.

Consider sub( ) in M, where @ = (L;,0) ©® : 2 x Ly — Ly defined by
O(m,B)={n:n€2and n-m € B} and Lz -{2 {0},0}.

Let f : ({{0},0},0 l{0},9}) — (L2,0),9 : ({{0}},0 l{03}) — (L2,0) and
h:({0},0 l{gy) = (L2,0) be an mclusmn
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By definition of =

({0,2},0 l{p2)) —— 1

! r

is a pullback.

Q —_— 0
XN (xg=n)

is a pullback.
Thus fN(g=2): ({0},0 |(a)) = ©

({0}, 0 ley) —

oo |z

Q —_—
XsNxg

1s a pullback.

({0}, © |{ay) —

ol

Q — Q
XfOxn

is a pullback.
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(10,2},0 lpyy) —— 1
(fﬁg)=>(fﬂh)l lT

Q —_

Xhng=Xfnh

is a pullback. Thus (f Ng) = (fNh): ({0,2},0 lgo,2y) — St

We assume {fN(g = h)} 2 {(fNg) = (fNh)}, then there exist k: ({8,2},0 l{8,2)
) — ({0}, © |{e}) such that {(fo(g=h)}ok={(fNg)= (fNh}). But thisis a
contradiction, since f N (g => k) and (fNg) = (f N h) are inclusion.

THEOREM 3.5. In any Boolean topos, we have
(f=>9)x(-9=-f)

Proof In any topos, we know that (f = g)C(—g=—f) Andit is also true
that (—g = —f) S {~(-N} = {-(-9)}]
ie. (~g=>-fC(-—f=--9)
By hypothesis, (Sub(d), C ) is a Boolean algebra.
We have the fact that f=— — fandg=— —9, REF([3cd].
Therefore (f = ¢) C(—g=>—f) S(f=>9)is hold.
Thus (f = g) = (g = —f)

THEOREM 3.6. In Sub(d) (for any topos), {(gnk) = f} 2 {(g = F)N(h = f)}

hold, but the converse is false.

Proof It is always true that (g = ficg=f)
By Lemma, {gN (g = f)} C f. Similary {(hn(h= N} Cf
By Lemma, [{gN (g = H}N{h0(h =} C f.
It is equivalent to [(gNA)N{(g = f)N(h = N Cf.
By Lemma, {(g = f) N (k= f)} € {(gnh) = f}.
The counter example of the converse is constructed.
Consider Sub( Q ) in M>, where @ = (L2,0)O : 2x L, — L, defined by ©®(m, B) =
{n:n€2andn-n€ B}and Ly = {2,{0},0}.
Let g : ({2,{0}},© lzqopy) = (L2,0)h = ({03}, @ lgopy) = (£2,0) and f :
({{0}},© l{qey3) = (L2,0) be an inclusion.
By Definition of N
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(10},0 ligy) —— 1

| |

Q —_—
XgNXh

is a pullback.

({waz}’Q |{9,2}) — 1

(gﬁh)afl J'T

Q —_— Q
Xgnh=X{¢

is a pullback.
Thus (g N k) = f:({0,2},0 |(s,2)) =

({0},0 ) — 1

o= | |

Q — Q
XgMNXh

is a pullback.

({0,2},0 lp,2y) —— 1

(h=>f)l l:r

Q —
Xh=X¢

is a pullback.
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({9},0 l{gy) —— 1
wzﬂnwﬂnl lT

Q _
Xg=>/=Xb>

is a pullback.

Thus (g = ) N (h = £): ({0},0 |is)) — 2.
We assume {(gNh) = f} C{(g = f)N(h = f)}, then there exist u : {B,2} —

{8} such that (¢ = f)N(h = flou= {(¢Nh)= f}. But this is a contradiction,
since (¢ = f)N(h = f) and (¢ N h) = f are inclusion.
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