ON THE DISTRIBUTIVITY IN SUB(d)

IG SUNG KIM SANGJI UNIVERSITY

1. Introduction

Consider the class of monomorphism with common codomain d, for any object d in a topos, denoted by Sub(d).

For any f and g in Sub(d), defining an "inclusion" relation $f \subseteq g$, then (Sub(d), \subseteq) form a poset.

The following operations are defined on the Sub(d).

$$-: Sub(d) \rightarrow Sub(d).$$

$$\cap: Sub(d) \times Sub(d) \rightarrow Sub(d).$$

$$\cup: Sub(d) \times Sub(d) \rightarrow Sub(d).$$

$$\Rightarrow: Sub(d) \times Sub(d) \rightarrow Sub(d).$$

For any f, g and h in Sub(d), $f \Rightarrow (g \cap h)$ is monic isomorphic to the distributivity.

But $f \cap (g \Rightarrow h)$ is not monic isomorphic to the distributivity, thus we show that $f \cap (g \Rightarrow h)$ is contained in it and the counter example of the reverse case is constructed.

In any topos, $f \Rightarrow g$ is contained in $-g \Rightarrow -f$. We show that $f \Rightarrow g$ is monic isomorphic to $-g \Rightarrow -f$ in Boolean topos.

Finally, we show $(g \cap h) \Rightarrow f$ contains the distributivity and the counter example is constructed for the reverse part.

2. Preliminaries

130 IG SUNG KIM

DEFINITION 2.1. Given $f: a \to d$ and $g: b \to d$ in a category C we put $f \leq g$ if there is a C-arrow $h: a \to b$ such that $f = g \circ h$

DEFINITION 2.2. Given $f: a \to d$ and $g: b \to d$ in a category C, f and g are isomorphic subobjects if $f \leq g$, and $g \leq f$, denoted by $f \simeq g$

DEFINITION 2.3. Sub(d)={[f]: f is a monic with cod f = d} where $f: a \to d$ determines an equivalence class

$$[f] = \{g : f \simeq g\}.$$

DEFINITION 2.5. An elementary topos is a category ε such that

- (1) ε is finitely complete.
- (2) ε is finitely co-complete.
- (3) ε has exponentiation.
- (4) ε has a subobject classifier.

EXAMPLE 2.6. Let $M_2 = (2, \cdot, 1)$ where $2 = \{0, 1\}$ and is defined by $1 \cdot 1 = 1, 1 \cdot 0 = 0 \cdot 1 = 0 \cdot 0 = 0$.

Then M_2 is a monoid with identity 1 in which 0 has no inverse.

The category of M_2 -Sets is a topos

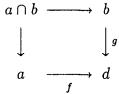
In $M_2, \Omega = (L_2, \omega)$ when L_2 is the left ideals of M_2 and the action $\omega : 2 \times L_2 \to L_2$ defined by $\omega(m, B) = \{n : n \in 2 \text{ and } n \cdot m \in B\}$

DEFINITION 2.7. Given $f: a \to d$, the complement of f (relative to d) is the subobject $-f: -a \to d$ whose character is $\neg \circ \chi_f$, Thus -f is defined to be the pullback of T along $\neg \circ \chi_f$, yielding $\chi_{-f} = \neg \circ \chi_f$

DEFINITION 2.8. The intersection of $f: a \to d$ and $g: b \to d$ is the subobject $f \cap g: a \cap b \to d$ obtained by pulling T back along $\chi_f \cap \chi_g = \cap \circ < \chi_f \cap \chi_g >$. Hence $\chi_{f \cap g} = \chi_f \cap \chi_g$.

LEMMA 2.9. In any topos ε , if $f: a \to d$ and $g: b \to d$ have pullback then $\alpha: c \to d$, where $\alpha = g \cdot f' = f \cdot g'$ has character $X_f \cap X_g$,

Thus $\chi_{\alpha} = \chi_{f \cap g}$ so $\alpha \simeq f \cap g$ and there is a pullback of the form



Proof REF

DEFINITION 2.10. If ε is a topos with classifier $T: 1 \to \Omega$, $\cap: \Omega \times \Omega \to i$ s the character in ε of the product arrow $\langle T, T \rangle: 1 \to \Omega \times \Omega$. Hence

$$\begin{array}{ccc}
1 & \xrightarrow{!} & 1 \\
 \downarrow & & \downarrow T \\
\Omega \times \Omega & \xrightarrow{\Omega} & \Omega
\end{array}$$

is a pullback.

DEFINITION 2.11. If ε is a topos with classifier $T: 1 \to \Omega$, $\Rightarrow: \Omega \times \Omega \to \Omega$ is the character of $e: C \to \Omega \times \Omega$ where the latter is the equalizer of $\Omega \times \Omega \rightrightarrows \Omega$, \cap being the conjunction truth arrow, and p_1 the first projection arrow of the product $\Omega \times \Omega$.

LEMMA 2.12. (Sub(d), \subseteq) is a bounded lattice with unit I_d and zero O_d

Proof REF

LEMMA 2.13. For $f: a \to d$, we have $(f \cap -f) \simeq O_d$

Proof REF

DEFINITION 2.14. A Boolean algebra is a complemented distributive lattice.

DEFINITION 2.15. A topos is called Boolean if for every ε -object d, $(Sub(d), \subseteq)$ is a Boolean algebra.

DEFINITION 2.16. If $f: a \to d$ and $g: b \to d$ are subobject of d then $f \Rightarrow g: (a \Rightarrow b) \to d$ is the subobject obtained by pulling T back along $\chi_f \Rightarrow \chi_g = (\Rightarrow \circ < \chi_f, \chi_g >)$. Thus

$$\begin{array}{ccc} a \Rightarrow & \stackrel{!}{\longrightarrow} & 1 \\ f \Rightarrow g \downarrow & & \downarrow T \\ d & \xrightarrow{\chi_f \Rightarrow \chi_g} & \Omega \end{array}$$

is a pullback. i.e. $\chi_{f\Rightarrow g}=(\chi_f\Rightarrow \chi_g)$.

132 IG SUNG KIM

3. Main Parts

LEMMA 3.1. In Sub(d), $h \subseteq f \cap g$ iff $h \subseteq f$ and $h \subseteq g$

Proof Let $h \subseteq f \cap g$, where $f \cap g : a \cap b \to d$, $h : c \to d$, $f : a \to d$ and $g : b \to d$. By Definition, there exist $k : c \to a \cap b$ such that $(f \cap g) \circ k = h$. Consider $\alpha \circ k$ and $\beta \circ k$ where $\alpha : a \cap b \to a$, $\beta : a \cap b \to b$, then $f \circ (\alpha \circ k) = h$ and $g \circ (\beta \circ k) = h$.

By a pullback. $f \cap g = f \circ \alpha = g \circ \beta$.

Thus $f \circ (\alpha \circ k) = (f \cap g) \circ k = h$, $g \circ (\beta \circ k) = (f \cap g) \circ k = h$.

Conversely let $h \subseteq f$ and $h \subseteq g$. By Definition, there exist m and n such that $f \circ m = h$ and $g \circ n = h$.

By Definition, there exist a morphism $q: c \to a \cap b$ such that $\alpha \circ q = m$ and $\beta \circ q = n$. Thus $h = (f \cap g) \circ q$, since $\beta \circ q = n$ and $g \circ n = h$ implies $h = g \circ (\beta \circ q)$, by pullback $h = (f \cap g) \circ q$.

LEMMA 3.2. In Sub(d), we have $h \subseteq (f \Rightarrow g)$ iff $f \cap h \subseteq g$

Proof REF

PROPOSTION 3.3. $\{(f\Rightarrow g)\cap (f\Rightarrow h)\}\simeq \{f\Rightarrow (g\cap h)\}$

Proof REF

THEOREM 3.4. In Sub(d), (for any topos) $\{f \cap (g \Rightarrow h)\} \subseteq \{(f \cap g) \Rightarrow (f \cap h)\}$ hold but the converse is false.

Proof We know that $\{g \cap (g \Rightarrow h)\} \subseteq h$, By the property of \cap , $[f \cap \{g \cap (g \Rightarrow h)\}] \subseteq (f \cap h)$, $\{(f \cap g) \cap (g \Rightarrow h)\} \subseteq (f \cap h)$ is equivalent to $[\{(f \cap g) \cap f\} \cap (g \Rightarrow h)] \subseteq (f \cap h)$.

By LEMMA, $\{f \cap (g \Rightarrow h\}) \subseteq \{(f \cap g) \Rightarrow (f \cap h\})$ The counter example is constructed.

Consider sub(Ω) in M_2 where $\Omega = (L_2, \odot) \odot : 2 \times L_2 \to L_2$ defined by $\odot(m, B) = \{n : n \in 2 \text{ and } n \cdot m \in B\}$ and $L_2 = \{2, \{0\}, \emptyset\}$.

Let $f:(\{\{0\},\emptyset\},\odot\mid_{\{0\}},\emptyset\})\to (L_2,\odot),g:(\{\{0\}\},\odot\mid_{\{0\}}\})\to (L_2,\emptyset)$ and $h:(\{\emptyset\},\odot\mid_{\{\emptyset\}})\to (L_2,\odot)$ be an inclusion.

By definition of \Rightarrow

$$(\{\emptyset, 2\}, \odot \mid_{\{\emptyset, 2\}}) \xrightarrow{!} 1$$

$$g \Rightarrow h \downarrow \qquad \qquad \downarrow T$$

$$\Omega \qquad \xrightarrow{\chi_g \Rightarrow \chi_h} \Omega$$

is a pullback.

$$(\{\emptyset\}, \odot |_{\{\emptyset\}}) \xrightarrow{!} 1$$

$$f \cap (g \Rightarrow h) \qquad \qquad \downarrow T$$

$$\Omega \qquad \xrightarrow{\chi_f \cap (\chi_{g \Rightarrow h})} \Omega$$

is a pullback.

Thus $f \cap (g \Rightarrow h) : (\{\emptyset\}, \odot |_{\{\emptyset\}}) \rightarrow \Omega$

$$\begin{array}{ccc} (\{\emptyset\}, \odot \mid_{\{\emptyset\}}) & \xrightarrow{!} & 1 \\ f \cap g \downarrow & & \downarrow T \\ \Omega & \xrightarrow{\chi_f \cap \chi_g} & \Omega \end{array}$$

is a pullback.

$$(\{\emptyset\}, \odot |_{\{\emptyset\}}) \xrightarrow{!} 1$$

$$f \cap h \downarrow \qquad \qquad \downarrow T$$

$$\Omega \xrightarrow{\chi_f \cap \chi_h} \Omega$$

is a pullback.

$$(\{\emptyset, 2\}, \odot \mid_{\{\emptyset, 2\}}) \xrightarrow{!} 1$$

$$(f \cap g) \Rightarrow (f \cap h) \downarrow \qquad \qquad \downarrow T$$

$$\Omega \xrightarrow{\chi_{h \cap g} \Rightarrow \chi_{f \cap h}} \Omega$$

is a pullback. Thus $(f \cap g) \Rightarrow (f \cap h) : (\{\emptyset, 2\}, \odot \mid_{\{\emptyset, 2\}}) \rightarrow \Omega$. We assume $\{f\cap (g\Rightarrow h)\}\supseteq \{(f\cap g)\Rightarrow (f\cap h)\}$, then there exist $k:(\{\emptyset,2\},\odot\mid_{\{\emptyset,2\}}$ $) \to (\{\emptyset\}, \odot |_{\{\emptyset\}})$ such that $\{f \cap (g \Rightarrow h)\} \circ k = \{(f \cap g) \Rightarrow (f \cap h\})$. But this is a contradiction, since $f \cap (g \Rightarrow h)$ and $(f \cap g) \Rightarrow (f \cap h)$ are inclusion.

THEOREM 3.5. In any Boolean topos, we have

$$(f \Rightarrow g) \simeq (-g \Rightarrow -f)$$

Proof In any topos, we know that $(f \Rightarrow g) \subset (-g \Rightarrow -f)$. And it is also true that $(-g \Rightarrow -f) \subseteq [\{-(-f)\} \Rightarrow \{-(-g)\}]$ i.e. $(-g \Rightarrow -f) \subseteq (-f \Rightarrow -g)$.

By hypothesis, $(Sub(d), \subset)$ is a Boolean algebra.

We have the fact that f = - - f and g = - - g, REF[3rd].

Therefore $(f \Rightarrow g) \subseteq (-g \Rightarrow -f) \subseteq (f \Rightarrow g)$ is hold.

Thus $(f \Rightarrow g) \simeq (-g \Rightarrow -f)$

THEOREM 3.6. In Sub(d) (for any topos), $\{(g \cap h) \Rightarrow f\} \supseteq \{(g \Rightarrow f) \cap (h \Rightarrow f)\}$ hold, but the converse is false.

Proof It is always true that $(g \Rightarrow f) \subseteq (g \Rightarrow f)$

By Lemma, $\{g \cap (g \Rightarrow f)\} \subseteq f$. Similary $\{h \cap (h \Rightarrow f)\} \subseteq f$

By Lemma, $[\{g\cap (g\Rightarrow f)\}\cap \{h\cap (h\Rightarrow f)\}]\subseteq f.$

It is equivalent to $[(g \cap h) \cap \{(g \Rightarrow f) \cap (h \Rightarrow f)\}] \subseteq f$.

By Lemma, $\{(g \Rightarrow f) \cap (h \Rightarrow f)\} \subseteq \{(g \cap h) \Rightarrow f\}.$

The counter example of the converse is constructed.

Consider Sub(Ω) in M_2 , where $\Omega = (L_2, \odot) \odot : 2 \times L_2 \rightarrow L_2$ defined by $\odot(m, B) =$

 $\{n: n \in 2 \text{ and } n \cdot n \in B\} \text{ and } L_2 = \{2, \{0\}, \emptyset\}.$

Let $g:(\{2,\{0\}\},\odot\mid_{\{2,\{0\}\}})\to (L_2,\odot), h:(\{\{0\}\},\odot\mid_{\{\{0\}\}})\to (L_2,\odot)$ and f: $(\{\{\emptyset\}\},\odot\mid_{\{\{\emptyset\}\}}) \to (L_2,\odot)$ be an inclusion.

By Definition of \cap

$$(\{\emptyset\}, \odot \mid_{\{\emptyset\}}) \xrightarrow{!} 1$$

$$g \cap h \downarrow \qquad \qquad \downarrow T$$

$$\Omega \xrightarrow{\chi_{\emptyset} \cap \chi_{h}} \Omega$$

is a pullback.

is a pullback.

Thus
$$(g \cap h) \Rightarrow f : (\{\emptyset, 2\}, \odot |_{\{\emptyset, 2\}}) \rightarrow \Omega$$

$$\begin{array}{ccc} (\{\emptyset\}, \odot \mid_{\{\emptyset\}}) & \xrightarrow{!} & 1 \\ & & \downarrow T \\ & \Omega & \xrightarrow{\chi_{\emptyset} \cap \chi_h} & \Omega \end{array}$$

is a pullback.

$$(\{\emptyset, 2\}, \odot \mid_{\{\emptyset, 2\}}) \xrightarrow{!} 1$$

$$(h \Rightarrow f) \downarrow \qquad \qquad \downarrow T$$

$$\Omega \qquad \xrightarrow{\chi_h \Rightarrow \chi_f} \Omega$$

is a pullback.

$$(\{\emptyset\}, \odot |_{\{\emptyset\}}) \xrightarrow{!} 1$$

$$(g \Rightarrow f) \cap (h \Rightarrow f) \downarrow \qquad \qquad \downarrow 1$$

$$\Omega \xrightarrow{\chi_{g \Rightarrow f} \Rightarrow \chi_{h \Rightarrow f}} \Omega$$

is a pullback.

Thus $(g \Rightarrow f) \cap (h \Rightarrow f) : (\{\emptyset\}, \odot |_{\{\emptyset\}}) \to \Omega$.

We assume $\{(g \cap h) \Rightarrow f\} \subseteq \{(g \Rightarrow f) \cap (h \Rightarrow f)\}$, then there exist $u : \{\emptyset, 2\} \rightarrow \{\emptyset\}$ such that $(g \Rightarrow f) \cap (h \Rightarrow f) \circ u = \{(g \cap h) \Rightarrow f\}$. But this is a contradiction, since $(g \Rightarrow f) \cap (h \Rightarrow f)$ and $(g \cap h) \Rightarrow f$ are inclusion.

REFERENCES

- 1. Barr.M & Wells.C., Toposes, Triples and Theories, Springer-Verlag New York Inc (1985).
- 2. Barry Mitchell, Theory of Categories, Academic press, New York and London (1965).
- 3. Bell.J.L., Topses and Local set theory, Clarendon Press, Oxford (1988).
- 4. Donnellan.T., Lattice Theory, Pergaman Press, Oxford (1968).
- 5. E.Duhuc, G.M.Kelly., A presentation of topoi as algebraic relative to categories or graphs, J. Algebra, 81 (1983), 420-433.
- 6. Gierz.G & Hofmann.K.H., A comperidium of continuous lattice, Springer-verlag New York Inc (1980).
- 7. Goldblaff, Topoi, North-Holland (1984).
- 8. Herrlich.H. & Strecker.G.E., Category Theory Allyn and Bacon Inc., Boston (1973).
- 9. F.W.Lawvere, An elementary theory of the category of sets, Proc. Natl. Acad. Sci. U.S.A 51 (1964).
- 10. William Mitchell Boolean topoi and the theory of Sets, J. of pure and applied algebra 2 (1972).
- 11. Rosebrugh, R., On Algebras defined by operations and equations in a topos, J. Pure and Applied Algebra 17 (1980), 203-221.
- 12. Schubert.H., Categories, Springer-Verlag New York Inc. (1972).