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1. Introduction

We consider the set of all real valued - measurable functions defined on
(X, B,u) and indentify p- equivalent 5 measurable functions. This means that
we deal with a set M = M(X, 3, pu) of real valued measurable functions which
contains exactly one representative for each u- equivalence class. Thus the set M
1s the set of all non u- equivalent real valued 8- measurable functions on (X, 8, u).
Also M is a vector space over the real field under the pointwise addition and the
pointwise scalar multiplication.

Now we shall give the topology 7 on M determined by a family of pseudometric
on M, D={dg: E € B3,u(E) < oo} ; that is, a subbasis for the topology is formed
by the sets

This topology 7 on M will be called the topology of convergenc in measure on
the measurable subsets of X whose measure is finite.

In this paper we investigate some topological structure 7 of M. Indeed, (M, T)
becomes a topological vector space over R, and then the convergence of a sequence
(fn) to a function f in M relative to the topology T is equivalent to that of (f,)
to f with respect to dg for every dg € D.

Lastly we show that if a measure space (X, 3, ) is a o-finite, one can define
a complete invariant metric d on M which is compatible with the topology 7 on
M, and hence (M, T) becomes a F-space over R.
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2. Topological structures of M

In this section we shall topologize the set M by a family of pseudometrics on
M. And then it will be seen that M is in fact a topological vector space over the
real field. We also examine a relationship between the convergence of a sequence
(frn) in M with respect to the topology on 7 and that of (f,) in M with respest
to pseudometric on M which induced 7.

Let (X, B, ) be a measure space and M be the vector space of all real valued
measurable functions defined on (X, 5, 1) and let E € 8 with u(E) < oo

Define dg : M x M — R by

_ If — gl
dE(f,g)—'/E——Hlf_g| du

Then dg is an invariant pseudometric on M.

A sequence (f,) in M converges locally in measure y to f € M if and only if
de(fn, f) = 0 asn — oo for all dg € D.

Let (fn) be a sequence in M such that dg(fn,f) — 0 as n,m — oo for every
de € D. If (X, B, 1) is a o-finite measure space, then it follows from Theorem 7.6
(1,p,69) and the fact that there exists a sequence (E,) in 8 such that (E,) < oo
and E.$ are pairwise disjoint, that there exists a function f € M such that
dg(fn, f) — 0 as n — oo for every dg € D.

DEFINITION 2-1. Let D= {dg : E € 3,u(E) < oo} be the family of pseudo-
metrics on E. Then we provide the topology T on M determined by D ; that is,
a subbasis for the topology is formed by the sets Bg(f,e) = {g € M :dg(f,g) <
e, feM,e>0 dgeD.

This topology 7 on M will be called the topology of convergence in measure
on every measurable subsets of X whose measure is finite.
We note that a basic open neighborhood of f in the topology 7 is of the form

U(f;e;dE,,dE,,dEs,...,dE,) = {gE M :dg,(f,9)<e,k=1,2,3...,n}

= ﬂ Bg,(f,¢)
k=1

where dg,,dg,,dEg,,...,dg, € D and € > 0.
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THEOREM 2-2. The topological space (M, T) is topological vector space over
R.

Proof For any f,g € M and XA € R, since f + ¢ and A\f are clearly 3-measurable
functions, We have f + g € M and Af € M

Thus M is a vector space over R, Now it remains only to show that the vector
operations are continuous. First, We show that the addition + is continuous.

Let fo,90 € M and ¢ > 0, and consider the open neighborhood

U(fo,90,:¢:dE, dE,,dEs, .. dE, ) of fo + gy in T.
If U denotes the open neighborhood

€ €
U(fo; 53 4By, B, dEss - -, dB,) X Ulgo; 5 4B, dE;, dpy, .. dE,)
in the product topology on M x M, then clearly (f,¢) € U implies that

B W(f +9)— (fo+ g0)l
de (f+ 9, fo +90)‘./Ek L+ |(f 4+ g) = (fo + 90l

|f = fol + lg = gol
S./Ek1+lf—fo|+|g—gol

\f = fol lg = g0
S./E,, T+1f - fol d”*./m T+g+90]
= dEk(fs fO) + dEk(gagO)

€ €
SE '2—=E (k=1,2,...,n)
This shows that addition is continuous. Next we show that scalar multiplication
is continuous. Let fo € M and ¢ € R be fixed for any dg € D.

de(Af, Ao fo) < de(Af, A fo) + de(Afo, Xofo)
_ IAf = Afol |Afo — Ao fol
- /E L+ |Af = Afol at /;9 1+ {Afo — Ao fol

_ M F = fol [A = Xol| fol
- /E 1+ |If = fol At /E 1+ A= Xol|fol d”

f = il A= dollfol
<@+ f ] e [ T aollfo] ¥
= (14 |Xo}) de(f, fo) + de(IX = Xo|fo,0)  (¥)

dp
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Provided |A — Ag] < 1. Now we see that Lebesgue Dominated Convergence
Theorem ( 1, p.44 ) implies

: 6| fol :
AL dr(§ -0
él—»n%). g 1+ 6|fo] }l—-n% £(80,0) (x5)

Let ¢ > 0. For any dg,,dEg,,dE,,...,dE, in D it follows from (%) that there
exit positive real numbers 8, 62,63,...,6, in (0,1) such that 0 < § < §; implies
|dg, (6f0,0)| < %

Let 6p = min{é1,62,8s,...,n}, then 0 < § < & implies

|dg, (60,0)] < % for all k = 1,2,3,4,...,n.
Now consider the open neighborhood

U(AOfo;s;dElvdEzvdEav- . -,dEn) of A[)fo inT.

If U denotes the open neighborhood

{AER: A= Xo| < 8o} x Ufo; (=) + ho|): de,, dEy, dE,, - - . dE,)

IR

in the product tolology on R x M, then A\f € U and (*) imply that

de, (Af, Mo fo) S (1 + |Aol)dE(S, fo) + dr (1A = Aol fo,0)

€ €
<L+ PaDGHL+ ey + 5 =
for every k =1,2,...,n.
This shows that scalar multiplication is continuous.

THEOREM 2-3. A sequence (f,) in M converges to f € M in the topology T
if and only if for any dg € D, dg(fa, f) — 0 as n — oo.

Proof (=) Let ¢ > 0 be given. Then for each dg € D, the neighborhood
U(f;e;dg) is an open neighborhood of f in 7. Since (f,) converges to f in
(M, T), there exists some N such that if n > N, then f, € U(f;¢;dg), that is
de(fn, f) <e. Thus limp—oo dg(fn, f) =0
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(«<=) Let U be an open set containing f in the topology 7. Then by the definition
of T, there exit dg,,dg,,dE,,-..,dE, € D. such that

U(f;€§dE1,dE2,dE3,---,dE,,) cU

Since limp— 00 dg(fr, f) = 0 for all dg € D, for each dg,,dE,,dE,,...,dE,, there
exist some N, k = 1,2,3,4,...,n such that if n > Ny k = 1,2,3,...,n then
dr, (fur f) < c.

Now let N = maz{Ny, N2, N3,..., Ny}, then for all n > N, dg, (fa,f) < ¢
forall k = 1,2,3,...,n. Thus f, € U(f;¢;dE,,dE,,dE,, ..., dE, ) for all n > N.
Hence (f,) converges to f in the topology 7.

For any two functions f,g € M, let d: M x M — R be defined by

_ dE'n(fag)
d(f,g) = Z 2 dn. (f.9)

where

|f — 9|
dEn f’ :/ —————dun=1,2,3,~-
(1:9) Je, L+1f -4l
Then it easily follow that d is an invariant metric on M. Indeed, we shall show
that it is possible to define a complete invariant metric on M which is compatible
with the topology.

THEOREM 2-4. The function space (M, d) is a complete metric space.

The metric topology T; on (M, d) determined by d coincides with the topol-
ogy T, determined by a family of pseudometrics, {dg, : n = 1,2,3,4,5,... }.
Consequently lim, oo d(fr, f) = 0 if and only if limp—oeo dg(fn, f) = 0 for all
n=123,---

Proof Let (fn) be a Cauchy sequence in (M, d). Then d(fn, f) — 0asm,n — oo.
For any k > 1, we note that dg, (fm, fn) < 2% d(fm, fa) for all m,n =1,2,3,....
Thus dg,(fm, fa) — 0 for every k as m,n — oo, so that (f,) converges in M as
Ex to a function f € M. Since

—1 d(fn, )
22 1+ di(far f)
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converges uniformly in n, it follows from the iterated limit theorem ( 2, p.143 )
that

bl f) S omi_dilfa f)
,}L.H;OZ? o) A w2 T

k

. iy _Gilfnn f)
= kllf%ozz nl_.,ool—{—d(fnvf)

=1

=0

Hence limp—oo d(frn, f) =0
Therefore d is a complete metric on M.

Now we shall show that 7; = 7;. To show that 7y C 7, it is enough to show
that for any f € M and for any subbasic open neighborhood of f relative to Ty of
the form B(f,e) = {g € M|d(f,g) < €}, there exists a sufficiently large positive
integer m such that

Bg,,(f,1/2™) = {glde..(f,9) <1/2™} C B(f,e).

Choose a positive integer k such that 1/2* < e. If ¢ € Bg,,(f,1/2™), then
de. (f,g9) <(1/2™), and hence '

dEl(fag) < dEz(fag) < dEa(fag) < dE'm(fag) < 1/2m

Moreover, since

AEAI) < g (fg) £ =1,2,-
1+dE(f,g)" E:(f,g) for every:

we see that
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_ e dE, f’
9= T+ dnf9)

de;(f,9) + {2 dg,(f,9)

;2(1+d.€ (£,9) .5 2¢(1+dg,(f,9)
1 1 =1
St 2 )
1l &1 X1
<yt
1
T om _1

Now let m = k + 1, then d(f,g) < 1/2¥, and hence
Be,,.(f,1/2"Y) C B(f,1/2%) C B(f.¢)

This implies that 73 C 7;. Next, to show that 73 C 7y, it is enough to show
that for any f € M and for any subbasic open neighborhood of f relative to 7;
of the form

Bg,.(f,e) = {g € Mldg,,(f,9) <e},
there exists a sufficiently large positive integer ¢ such that

B(f,1/2%) C Bg,.(f¢).

Choose a positive integer k such that 1/2% < e. If g € B(f,1/2¢) then

oo

Z dE. fag) < l
and hence we have
dEm(fag)

(1 +de,(f.9) 2

If we solve this inequality for dg,_ (f,g), we obtain dg,,(f,¢) <
Now let £ = k+m+1, then dg,,(f,9) < srr37 < 5¢ and hence B(f,1/2k+tm+1)
dg, (f,1/2%) C Bg, (f,€). This implies that 7; C 4.

—1
2-m 1"
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COROLLARY 2-5. The metric topology 7y on M coiucides with the topology
T in M convergence on each measurable subset of X whose measure is finite.
Consequently the topological vector space (M, T) becomes a F-space.

Proof We recall that the topology 7; on M is topology determined by D = {dg :
E € B,u(E) < oo}

Since {dg, : n =1,2,3,4,---} C D, it follows that 7, C 7.

Now we show that 7 C 74. To show this, it is enough to show that for any
f € M and for any subbasic open neighborhood relative to 7 of f of the form
Bg(f,6), there exists a subbasic neighborhood relative to 7y of f, B,(f,c) = {g:
dg,(f,g9) < €} such that Bg, (f,e) C Bg,(f,6). Since E € § and u(E) < oo, we
can sufficiently large n such taht u(E) < u(E,). Hence we have

|f —g] |f =gl
SO PS4 N PS4 R
./El+|f—g| “S./E,,Hlf—gl a

so that Bg, (f,6) € Bg(f,6). Therefore we have T = T;. As we have just shown
above, T is induced by a complete invariant metric d. Therefore (M,T) is a
F-space.
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