A NOTE ON THE FUNCTION SPACE $\mathcal M$

Joung Nam Lee Dankuk University Seoul, 140-714, Korea

1. Introduction

We consider the set of all real valued β - measurable functions defined on (X, β, μ) and indentify μ - equivalent β measurable functions. This means that we deal with a set $\mathcal{M} \equiv \mathcal{M}(X, \beta, \mu)$ of real valued measurable functions which contains exactly one representative for each μ - equivalence class. Thus the set \mathcal{M} is the set of all non μ - equivalent real valued β - measurable functions on (X, β, μ) . Also \mathcal{M} is a vector space over the real field under the pointwise addition and the pointwise scalar multiplication.

Now we shall give the topology \mathcal{T} on \mathcal{M} determined by a family of pseudometric on \mathcal{M} , $\mathcal{D} = \{d_E : E \in \beta, \mu(E) < \infty\}$; that is, a subbasis for the topology is formed by the sets

$$B_E(f,\delta) = \{g \in \mathcal{M} : d_E(f,g) < \delta\}, f \in \mathcal{M}, \ \delta > 0, \ d_E \in \mathcal{D}$$

This topology \mathcal{T} on \mathcal{M} will be called the topology of convergenc in measure on the measurable subsets of X whose measure is finite.

In this paper we investigate some topological structure \mathcal{T} of \mathcal{M} . Indeed, $(\mathcal{M}, \mathcal{T})$ becomes a topological vector space over \mathbb{R} , and then the convergence of a sequence (f_n) to a function f in \mathcal{M} relative to the topology \mathcal{T} is equivalent to that of (f_n) to f with respect to d_E for every $d_E \in \mathcal{D}$.

Lastly we show that if a measure space (X, β, μ) is a σ -finite, one can define a complete invariant metric d on \mathcal{M} which is compatible with the topology \mathcal{T} on \mathcal{M} , and hence $(\mathcal{M}, \mathcal{T})$ becomes a F-space over \mathbb{R} .

2. Topological structures of \mathcal{M}

In this section we shall topologize the set \mathcal{M} by a family of pseudometrics on M. And then it will be seen that M is in fact a topological vector space over the real field. We also examine a relationship between the convergence of a sequence (f_n) in \mathcal{M} with respect to the topology on \mathcal{T} and that of (f_n) in \mathcal{M} with respect to pseudometric on \mathcal{M} which induced \mathcal{T} .

Let (X, β, μ) be a measure space and \mathcal{M} be the vector space of all real valued measurable functions defined on (X, β, μ) and let $E \in \beta$ with $\mu(E) < \infty$

Define $d_E: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ by

$$d_E(f,g) = \int_E \frac{|f-g|}{1+|f-g|} d\mu$$

Then d_E is an invariant pseudometric on \mathcal{M} .

A sequence (f_n) in \mathcal{M} converges locally in measure μ to $f \in \mathcal{M}$ if and only if $d_E(f_n, f) \to 0$ as $n \to \infty$ for all $d_E \in \mathcal{D}$.

Let (f_n) be a sequence in \mathcal{M} such that $d_E(f_n, f) \to 0$ as $n, m \to \infty$ for every $d_E \in D$. If (X, β, μ) is a σ -finite measure space, then it follows from Theorem 7.6 (l,p,69) and the fact that there exists a sequence (E_n) in β such that $(E_n) < \infty$ and E_n 's are pairwise disjoint, that there exists a function $f \in \mathcal{M}$ such that $d_E(f_n, f) \to 0$ as $n \to \infty$ for every $d_E \in \mathcal{D}$.

DEFINITION 2-1. Let $\mathcal{D} = \{d_E : E \in \beta, \mu(E) < \infty\}$ be the family of pseudometrics on E. Then we provide the topology \mathcal{T} on \mathcal{M} determined by \mathcal{D} ; that is, a subbasis for the topology is formed by the sets $B_E(f, \varepsilon) = \{g \in \mathcal{M} : d_E(f, g) < \varepsilon\}, f \in \mathcal{M}, \varepsilon > 0 \ d_E \in \mathcal{D}$.

This topology \mathcal{T} on \mathcal{M} will be called the topology of convergence in measure on every measurable subsets of X whose measure is finite.

We note that a basic open neighborhood of f in the topology \mathcal{T} is of the form

$$U(f;\varepsilon;d_{E_1},d_{E_2},d_{E_3},\ldots,d_{E_n}) = \{g \in \mathcal{M}: d_{E_k}(f,g) < \varepsilon, k = 1,2,3\ldots,n\}$$
$$= \bigcap_{k=1}^n B_{E_k}(f,\varepsilon)$$

where $d_{E_1}, d_{E_2}, d_{E_3}, \ldots, d_{E_n} \in \mathcal{D}$ and $\varepsilon > 0$.

THEOREM 2-2. The topological space $(\mathcal{M}, \mathcal{T})$ is topological vector space over \mathbb{R} .

Proof For any $f, g \in \mathcal{M}$ and $\lambda \in \mathbb{R}$, since f + g and λf are clearly β -measurable functions, We have $f + g \in \mathcal{M}$ and $\lambda f \in \mathcal{M}$

Thus \mathcal{M} is a vector space over \mathbb{R} , Now it remains only to show that the vector operations are continuous. First, We show that the addition + is continuous.

Let $f_0, g_0 \in \mathcal{M}$ and $\varepsilon > 0$, and consider the open neighborhood

$$U(f_0, g_0, ; \varepsilon; d_{E_1}, d_{E_2}, d_{E_3}, \dots, d_{E_n})$$
 of $f_0 + g_0$ in T .

If U denotes the open neighborhood

$$U(f_0; \frac{\varepsilon}{2}; d_{E_1}, d_{E_2}, d_{E_3}, \dots, d_{E_n}) \times U(g_0; \frac{\varepsilon}{2}; d_{E_1}, d_{E_2}, d_{E_3}, \dots, d_{E_n})$$

in the product topology on $\mathcal{M} \times \mathcal{M}$, then clearly $(f,g) \in U$ implies that

$$d_{E_{k}}(f+g,f_{0}+g_{0}) = \int_{E_{k}} \frac{|(f+g)-(f_{0}+g_{0})|}{1+|(f+g)-(f_{0}+g_{0})|} d\mu$$

$$\leq \int_{E_{k}} \frac{|f-f_{0}|+|g-g_{0}|}{1+|f-f_{0}|+|g-g_{0}|} d\mu$$

$$\leq \int_{E_{k}} \frac{|f-f_{0}|}{1+|f-f_{0}|} d\mu + \int_{E_{k}} \frac{|g-g_{0}|}{1+|g+g_{0}|} d\mu$$

$$= d_{E_{k}}(f,f_{0}) + d_{E_{k}}(g,g_{0})$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad (k=1,2,\ldots,n)$$

This shows that addition is continuous. Next we show that scalar multiplication is continuous. Let $f_0 \in \mathcal{M}$ and $\lambda_0 \in \mathbb{R}$ be fixed for any $d_E \in \mathcal{D}$.

$$\begin{split} d_{E}(\lambda f, \lambda_{0} f_{0}) &\leq d_{E}(\lambda f, \lambda f_{0}) + d_{E}(\lambda f_{0}, \lambda_{0} f_{0}) \\ &= \int_{E} \frac{|\lambda f - \lambda f_{0}|}{1 + |\lambda f - \lambda f_{0}|} d\mu + \int_{E} \frac{|\lambda f_{0} - \lambda_{0} f_{0}|}{1 + |\lambda f_{0} - \lambda_{0} f_{0}|} d\mu \\ &= \int_{E} \frac{|\lambda||f - f_{0}|}{1 + |\lambda||f - f_{0}|} d\mu + \int_{E} \frac{|\lambda - \lambda_{0}||f_{0}|}{1 + |\lambda - \lambda_{0}||f_{0}|} d\mu \\ &\leq (1 + |\lambda_{0}|) \int_{E} \frac{|f - f_{0}|}{1 + |f - f_{0}|} d\mu + \int_{E} \frac{|\lambda - \lambda_{0}||f_{0}|}{1 + |\lambda + \lambda_{0}||f_{0}|} d\mu \\ &= (1 + |\lambda_{0}|) d_{E}(f, f_{0}) + d_{E}(|\lambda - \lambda_{0}|f_{0}, 0) \quad (*) \end{split}$$

Provided $|\lambda - \lambda_0| < 1$. Now we see that Lebesgue Dominated Convergence Theorem (1, p.44) implies

$$\lim_{\delta \to 0} \int_{E} \frac{\delta |f_0|}{1 + \delta |f_0|} = \lim_{\delta \to 0} d_E(\delta f_0, 0) = 0 \qquad (**)$$

Let $\varepsilon > 0$. For any $d_{E_1}, d_{E_2}, d_{E_3}, \ldots, d_{E_n}$ in \mathcal{D} it follows from (**) that there exit positive real numbers $\delta_1, \delta_2, \delta_3, \ldots, \delta_n$ in (0,1) such that $0 < \delta < \delta_k$ implies $|d_{E_k}(\delta f_0, 0)| < \frac{\varepsilon}{2}$

Let $\delta_0 = min\{\delta_1, \delta_2, \delta_3, \dots, n\}$, then $0 < \delta < \delta_0$ implies

$$|d_{E_k}(\delta_0,0)| < rac{arepsilon}{2} \quad ext{for all } k=1,2,3,4,\ldots,n.$$

Now consider the open neighborhood

$$U(\lambda_0 f_0; \varepsilon; d_{E_1}, d_{E_2}, d_{E_3}, \ldots, d_{E_n})$$
 of $\lambda_0 f_0$ in \mathcal{T} .

If U denotes the open neighborhood

$$\{\lambda \in \mathbb{R} : |\lambda - \lambda_0| < \delta_0\} \times U(f_0; (\frac{\varepsilon}{2})(1 + |\lambda_0|); d_{E_1}, d_{E_2}, d_{E_3}, \dots, d_{E_n})$$

in the product tolology on $\mathbb{R} \times \mathcal{M}$, then $\lambda f \in U$ and (*) imply that

$$\begin{split} d_{E_k}(\lambda f, \lambda_0 f_0) &\leq (1 + |\lambda_0|) d_E(f, f_0) + d_{E_k}(|\lambda - \lambda_0| f_0, 0) \\ &< (1 + |\lambda_0|) (\frac{\varepsilon}{2}) (1 + |\lambda_0|) + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

for every $k = 1, 2, \ldots, n$.

This shows that scalar multiplication is continuous.

THEOREM 2-3. A sequence (f_n) in \mathcal{M} converges to $f \in \mathcal{M}$ in the topology \mathcal{T} if and only if for any $d_E \in \mathcal{D}$, $d_E(f_n, f) \to 0$ as $n \to \infty$.

Proof (\Longrightarrow) Let $\varepsilon > 0$ be given. Then for each $d_E \in \mathcal{D}$, the neighborhood $U(f;\varepsilon;d_E)$ is an open neighborhood of f in \mathcal{T} . Since (f_n) converges to f in $(\mathcal{M},\mathcal{T})$, there exists some N such that if n > N, then $f_n \in U(f;\varepsilon;d_E)$, that is $d_E(f_n,f) < \varepsilon$. Thus $\lim_{n\to\infty} d_E(f_n,f) = 0$

 (\Leftarrow) Let U be an open set containing f in the topology \mathcal{T} . Then by the definition of \mathcal{T} , there exit $d_{E_1}, d_{E_2}, d_{E_3}, \ldots, d_{E_n} \in \mathcal{D}$. such that

$$U(f;\varepsilon;d_{E_1},d_{E_2},d_{E_3},\ldots,d_{E_n})\subset U$$

Since $\lim_{n\to\infty} d_E(f_n, f) = 0$ for all $d_E \in \mathcal{D}$, for each $d_{E_1}, d_{E_2}, d_{E_3}, \ldots, d_{E_n}$, there exist some N_k , $k = 1, 2, 3, 4, \ldots, n$ such that if $n > N_k$ $k = 1, 2, 3, \ldots, n$ then $d_{E_k}(f_n, f) < \varepsilon$.

Now let $N = max\{N_1, N_2, N_3, \ldots, N_n\}$, then for all n > N, $d_{E_k}(f_n, f) < \varepsilon$ for all $k = 1, 2, 3, \ldots, n$. Thus $f_n \in U(f; \varepsilon; d_{E_1}, d_{E_2}, d_{E_3}, \ldots, d_{E_n})$ for all n > N. Hence (f_n) converges to f in the topology T.

For any two functions $f, g \in \mathcal{M}$, let $d: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ be defined by

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_{E_n}(f,g)}{1 + d_{E_n}(f,g)}$$

where

$$d_{E_n}(f,g) = \int_{E_n} \frac{|f-g|}{1+|f-g|} d\mu \ n = 1, 2, 3, \cdots.$$

Then it easily follow that d is an invariant metric on \mathcal{M} . Indeed, we shall show that it is possible to define a complete invariant metric on \mathcal{M} which is compatible with the topology.

THEOREM 2-4. The function space (\mathcal{M}, d) is a complete metric space.

The metric topology \mathcal{T}_d on (\mathcal{M}, d) determined by d coincides with the topology \mathcal{T}_1 determined by a family of pseudometrics, $\{d_{E_n}: n=1,2,3,4,5,\ldots\}$. Consequently $\lim_{n\to\infty} d(f_n,f)=0$ if and only if $\lim_{n\to\infty} d_E(f_n,f)=0$ for all $n=1,2,3,\cdots$.

Proof Let (f_n) be a Cauchy sequence in (\mathcal{M}, d) . Then $d(f_n, f) \to 0$ as $m, n \to \infty$. For any $k \geq 1$, we note that $d_{E_k}(f_m, f_n) \leq 2^k \ d(f_m, f_n)$ for all $m, n = 1, 2, 3, \ldots$. Thus $d_{E_k}(f_m, f_n) \to 0$ for every k as $m, n \to \infty$, so that (f_n) converges in \mathcal{M} as E_k to a function $f \in \mathcal{M}$. Since

$$\sum_{i=1}^{k} 2^{-i} \frac{d_i(f_n, f)}{1 + d_i(f_n, f)}$$

converges uniformly in n, it follows from the iterated limit theorem (2, p.143) that

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} 2^{-k} \frac{d_k(f_n, f)}{1 + d_k(f_n, f)} = \lim_{n \to \infty} \lim_{k \to \infty} \sum_{i=1}^{k} 2^{-i} \frac{d_i(f_n, f)}{1 + d_i(f_n, f)}$$
$$= \lim_{k \to \infty} \sum_{i=1}^{k} 2^{-i} \lim_{n \to \infty} \frac{d_i(f_n, f)}{1 + d_i(f_n, f)}$$
$$= 0$$

Hence $\lim_{n\to\infty} d(f_n, f) = 0$

Therefore d is a complete metric on \mathcal{M} .

Now we shall show that $\mathcal{T}_d = \mathcal{T}_1$. To show that $\mathcal{T}_d \subset \mathcal{T}_1$, it is enough to show that for any $f \in \mathcal{M}$ and for any subbasic open neighborhood of f relative to \mathcal{T}_d of the form $B(f,\varepsilon) = \{g \in \mathcal{M} | d(f,g) < \varepsilon\}$, there exists a sufficiently large positive integer m such that

$$B_{E_m}(f, 1/2^m) = \{g | d_{E_m}(f, g) < 1/2^m\} \subset B(f, \varepsilon).$$

Choose a positive integer k such that $1/2^k < \varepsilon$. If $g \in B_{E_m}(f, 1/2^m)$, then $d_{E_k}(f, g) < (1/2^m)$, and hence

$$d_{E_1}(f,g) \le d_{E_2}(f,g) \le d_{E_3}(f,g) \cdots \le d_{E_m}(f,g) < 1/2^m$$

Moreover, since

$$\frac{d_{E_i}(f,g)}{1+d_{E_i}(f,g)} \le d_{E_i}(f,g) \text{ for every } i=1,2,\cdots,$$

we see that

$$d(f,g) = \sum_{i=1}^{\infty} \frac{d_{E_{i}}(f,g)}{2^{i}(1+d_{E_{i}}(f,g))} = \sum_{i=1}^{m} \frac{d_{E_{i}}(f,g)}{2^{i}(1+d_{E_{i}}(f,g))} + \sum_{i=m+1}^{\infty} \frac{d_{E_{i}}(f,g)}{2^{i}(1+d_{E_{i}}(f,g))}$$

$$\leq \frac{1}{2^{m}} (\sum_{i=1}^{m} \frac{1}{2^{i}} + \sum_{i=m+1}^{\infty} \frac{1}{2^{i}})$$

$$< \frac{1}{2^{m}} (\sum_{i=1}^{\infty} \frac{1}{2^{i}} + \sum_{i=1}^{\infty} \frac{1}{2^{i}})$$

$$= \frac{1}{2^{m}-1}$$

Now let m = k + 1, then $d(f, g) < 1/2^k$, and hence

$$B_{E_{k+1}}(f, 1/2^{k+1}) \subset B(f, 1/2^k) \subset B(f, \varepsilon)$$

This implies that $\mathcal{T}_d \subset \mathcal{T}_1$. Next, to show that $\mathcal{T}_1 \subset \mathcal{T}_d$, it is enough to show that for any $f \in \mathcal{M}$ and for any subbasic open neighborhood of f relative to \mathcal{T}_1 of the form

$$B_{E_m}(f,\varepsilon) = \{g \in \mathcal{M} | d_{E_m}(f,g) < \varepsilon\},$$

there exists a sufficiently large positive integer ℓ such that

$$B(f, 1/2^{\ell}) \subset B_{E_m}(f, \varepsilon).$$

Choose a positive integer k such that $1/2^k < \varepsilon$. If $g \in B(f, 1/2^{\ell})$ then

$$d_{E_i}(f,g) = \sum_{i=1}^{\infty} \frac{d_{E_i}(f,g)}{2^i(1 + d_{E_i}(f,g))} < \frac{1}{2^{\ell}}$$

and hence we have

$$\frac{d_{E_m}(f,g)}{2^m(1+d_{E_m}(f,g))} < \frac{1}{2^\ell}$$

If we solve this inequality for $d_{E_m}(f,g)$, we obtain $d_{E_m}(f,g) < \frac{1}{2^{\ell-m}-1}$. Now let $\ell = k+m+1$, then $d_{E_m}(f,g) < \frac{1}{2^{k+1}+1} < \frac{1}{2^k}$ and hence $B(f,1/2^{k+m+1}) \subset d_{E_m}(f,1/2^k) \subset B_{E_m}(f,\varepsilon)$. This implies that $\mathcal{T}_1 \subset \mathcal{T}_d$. **COROLLARY 2-5.** The metric topology \mathcal{T}_d on \mathcal{M} coincides with the topology \mathcal{T} in \mathcal{M} convergence on each measurable subset of X whose measure is finite. Consequently the topological vector space $(\mathcal{M}, \mathcal{T})$ becomes a F-space.

Proof We recall that the topology \mathcal{T}_1 on \mathcal{M} is topology determined by $\mathcal{D} = \{d_E : E \in \beta, \mu(E) < \infty\}$

Since $\{d_{E_n}: n=1,2,3,4,\cdots\} \subset \mathcal{D}$, it follows that $\mathcal{T}_d \subset \mathcal{T}$.

Now we show that $\mathcal{T} \subset \mathcal{T}_d$. To show this, it is enough to show that for any $f \in \mathcal{M}$ and for any subbasic open neighborhood relative to \mathcal{T} of f of the form $B_E(f,\delta)$, there exists a subbasic neighborhood relative to \mathcal{T}_d of f, $B_n(f,\varepsilon) = \{g : d_{E_n}(f,g) < \varepsilon\}$ such that $B_{E_n}(f,\varepsilon) \subset B_{E_n}(f,\delta)$. Since $E \in \beta$ and $\mu(E) < \infty$, we can sufficiently large n such that $\mu(E) < \mu(E_n)$. Hence we have

$$\int_E \frac{|f-g|}{1+|f-g|} \ d\mu \le \int_{E_R} \frac{|f-g|}{1+|f-g|} \ d\mu$$

so that $B_{E_n}(f,\delta) \in B_E(f,\delta)$. Therefore we have $T = T_d$. As we have just shown above, T is induced by a complete invariant metric d. Therefore (\mathcal{M},T) is a F-space.

REFERENCES

- [1] Bartle, R.G, The elements of integration, New York, Wiley (1966).
- [2] _____, The elements of real analysis, New York, Wiley (1964).
- [3] Husain, Taqdir, Topology and maps, New York, Plenum Press (1977).
- [4] Royden, H.L, Real analysis 2nd ed, New York, Macmillan (1968).
- [5] Rudin, W, Functional analysis, New York, McGraw Hill (1973).