한국통신학회논문지 (The Journal of Korean Institute of Communications and Information Sciences)
- 제19권11호
- /
- Pages.2264-2275
- /
- 1994
- /
- 1226-4717(pISSN)
- /
- 2287-3880(eISSN)
다층구조 퍼셉트론을 이용한 분류 영상압축 및 코딩
Classified Image Compression and Coding using Multi-Layer Percetpron
초록
본 논문에서는 블록 분류와 코딩과 함께 신경회로망을 이용한 영상압축을 보였다. 오차 역전파 알고리즘으로 학습되는 다층구조 신경회로망은 정규화된 영상데이타를 감소된 공간 중복성을 가지는 은닉층의 값으로 변환하는데 사용된다. 기본적으로 영상압축은 입력층과 출력층의 뉴런보다 적은 수의 은닉층 뉴런에 의해 얻어진다. 여기에 시각체계의 민감도에 따른 영상블럭 복잡성에 따라 적응적으로 압축되므로 블록을 분류한다. 또한 은닉뉴런의 양자화된 값은 효과적인 전송을 위해 entropy coding을 이용한 경우 화질의 큰 저하없이 약 25:1의 압축률을 얻었다.
In this paper, image compression based on neural networks is presented with block classification and coding. Multilayer neural networks with error back-propagation learning algorithm are used to transform the normalized image date into the compressed hidden values by reducing spatial redundancies. Image compression can basically be achieved with smaller number of hidden neurons than the numbers of input and output neurons. Additionally, the image blocks can be grouped for adaptive compression rates depending on the characteristics of the complexity of the blocks in accordance with the sensitivity of the human visual system(HVS). The quantized output of the hidden neuron can also be entropy coded for an efficient transmission. In computer simulation, this approach lie in the good performances even with images outside the training set and about 25:1 compression rate was achieved using the entropy coding without much degradation of the reconstructed images.
키워드