ON THE COMPLETENESS OF \mathcal{L} F(X, Y)

Gil Seob Rhie*, Yeoul Ouk Sung*

ABSTRACT

Let X, Y be normed linear spaces, and let ρ_1 , ρ_2 be lower semi-continuous fuzzy norms on X, Y respectively, and have the bounded supports on X. Y respectively. In this paper, we prove that if Y is complete, the set of all fuzzy continuous linear maps from X into Y is a fuzzy complete fuzzy normed linear space.

I. Introduction.

Since Katsaras and Liu [1] have introduced the notions of fuzzy vector spaces and fuzzy topological vector spaces, the theory of fuzzy topological vector spaces were developed by [2, 3, 4, 5]. In [3]. Katsaras defined the fuzzy norm on a vector space and studied its properties. Krishna and Sarma [5] studied the properties of fuzzy norms on the set of all fuzzy continuous linear maps from a fuzzy normed linear space into another fuzzy normed linear space. In [6], Rhie, Choi and Kim introduced the notions of the fuzzy α -Cauchy sequence and the fuzzy completeness, and studied some of related properties of fuzzy normed linear spaces.

Let X, Y be normed linear spaces, and let ρ_1, ρ_2 be lower semi-continuous fuzzy norms on X, Y respectively, and have the bounded supports on X, Y respectively. In this paper, we prove that if Y is complete, the set of all fuzzy continuous linear maps from X into Y is a fuzzy complete fuzzy normed linear space.

II. Preliminaries.

Throughout this paper X is a vector space over the field $K(R \ or \ C)$. Fuzzy subsets of X are denoted by Greek letters in general. X_A denotes the characteristic function of the crisp set A. By a fuzzy point μ we mean a fuzzy subset $\mu: X \to [0, 1]$ such that

$$\mu(z) = \begin{cases} \alpha & \text{if } z = x \\ 0 & \text{otherwise} \end{cases}$$

^{*}Department of Mathematics, Hannam University, Taejon, Korea.

where $\alpha \in (0, 1)$, and I^X denoted the set $\{\mu \mid \mu : X \to [0, 1]\}$. We usually denote the fuzzy point with support x and value α by (x, α) .

Definition 2.1 [5]. Let (X, τ) be a fuzzy topological space. A fuzzy subset μ in X is called a neighbourhood of (x, α) if there exists $\psi \in \tau$ with $\psi(x) \ge \alpha$ and $\psi \le \mu$.

Definition 2.2 [5]. Let (X, τ) be a fuzzy topological space, $\{\mu_n, \alpha_n\}$ a sequence of fuzzy points in X and μ a fuzzy point in X. We say that $\{\mu_n\}$ converges to μ , written as $\mu_n \to \mu$ if for every neighbourhood N of μ there exists a positive integer M such that $n \ge M$ implies $\mu_n \le M$.

Definition 2.3 [3]. A fuzzy norm on X is a fuzzy set ρ in X which is absolutely convex and absorbing and $\inf_{t>0} t \rho(x) = 0$ for $x \neq 0$.

Theorem 2.4 [3, Theorem 4.2]. If ρ is a fuzzy norm on X, then the family $\mathcal{B}_{\rho} = \{\theta \land (t \rho) \mid 0 < \theta \le 1, t > 0\}$ is a base at zero for a fuzzy linear topology τ_{ρ} .

Definition 2.5 [3]. Let ρ be a fuzzy norm on a linear space. The fuzzy topology τ_{ρ} in Theorem 2.4 is called the fuzzy topology induced by the fuzzy norm ρ . And a linear space equipped with a fuzzy norm is called a fuzzy normed linear space.

Definition 2.6 [4, 5]. If ρ is a fuzzy norm on X, P_{ε} is defined by $P_{\varepsilon}(x) = \inf\{t \ge 0 \mid t \, \rho(x) \ge \varepsilon\}$ for each $\varepsilon \in (0, 1)$ and $P_{\alpha}: X \to R_+$ defined by $P_{\alpha}(x) = \sup_{\varepsilon \le \alpha} P_{\varepsilon}(x)$ for every $x \in X$.

Theorem 2.7 [4, Theorem 3.2]. P_{ε} is a norm on X for each $\varepsilon \in (0, 1)$ if and only if ρ is a fuzzy norm on X.

Theorem 2.8 [3, Theorem 4.7]. Let (X_1, ρ_1) , (X_2, ρ_2) be fuzzy normed linear spaces and $f: X_1 \to X_2$ a linear map. Then, f is fuzzy continuous if and only if for each θ , $0 < \theta < 1$, there exists t > 0 such that $\theta \land \rho_1(tx) \le \rho_2(f(x))$ for all $x \in X$.

Definition 2.9 [6]. Let $\alpha \in (0, 1)$. A sequence of fuzzy points $\{\mu_n = (x_n, \alpha_n)\}$ is said to be a fuzzy α . Cauchy sequence in a fuzzy normed linear space (X, ρ) if for each zero neighbourhood N with $N(0) > \alpha$, there exists a positive integer M such that $n, m \ge M$ implies $\mu_n - \mu_m = (x_n - x_m, \alpha_n \wedge \alpha_m) \le N$.

Theorem 2.10 [6. Theorem 3.2] Let (X, ρ) be a fuzzy normed linear space and $\alpha \in (0, 1)$. Then $\{(x_n, \alpha_n)\}$ is a fuzzy α -Cauchy if and only if for each t > 0, there exists a positive integer M such that $n, m \ge M$ implies $\alpha_n \wedge \alpha_m \le \alpha$ and $P_{(\alpha_n \wedge \alpha_m)} - (x_n - x_n) \le t$.

Theorem 2.11 [5, Theorem 3.2]. Let (X, ρ) be a fuzzy normed linear space and $\alpha \in (0, 1)$. Then $\{\mu_n = (x_n, \alpha_n)\}$ converges to (x, α) if and only if for every t > 0, there exists a positive integer M such that $n \ge M$ implies $\alpha_n \le \alpha$ and $P_{\alpha_n} - (x_n - x) < t$.

Definition 2.12 [6]. A fuzzy normed linear space (X, ρ) is said to be fuzzy α-complete if every fuzzy α-Cauchy sequence $\{\mu_n\}$ converges to a fuzzy point $\mu = (x, \alpha)$, (X, ρ) is said to be fuzzy complete if it is fuzzy

 α -complete for every $\alpha \in (0, 1)$.

■. Main Results

In this section, we deal with the completeness of the set of all fuzzy continuous linear maps from a fuzzy normed space into another fuzzy normed linear space.

Definition 3.1 [5]. Let (X, ρ_1) , (Y, ρ_2) be fuzzy normed vector spaces and $\mathcal{L} F(X, Y)$ be the vector space of all fuzzy continuous linear maps from (X, ρ_1) to (Y, ρ_2) . For each $\theta \in (0, 1)$, $t_\theta : \mathcal{L} F(X, Y) \to R_+$ is defined by $t_\theta(f) = \inf\{s > 0 \mid \rho_2(f(x)) \ge \theta \land \rho_1(sx) \text{ for all } x \in X\}$.

We write $t_{\theta}(f) = t(\theta, f)$.

Definition 3.2 [5]. We define $\rho_*: \mathcal{L} F(X, Y) \to [0, 1]$ by $\rho_*(f) = \sup_{\theta \in [0, 1]} (\theta \wedge 1/[t(\theta, f)])$ for $f \in \mathcal{L} F(X, Y)$.

Theorem 3.3 [5, Theorem 4.7]. ρ_* is a fuzzy norm on $\mathcal{L} F(X, Y)$.

Theorem 3.4 [5, Theorem 4.10]. Let $(X, \|\cdot\|_1)$, $(Y, \|\cdot\|_2)$ be normed linear spaces over the field K and $\rho_1 = \chi_{B_1}$ and $\rho_2 = \chi_{B_2}$, $B_1 = \{x \in X \mid \|x\|_1 \le 1\}$ and $B_2 = \{y \in Y \mid \|y\|_2 \le 1\}$, $\mathcal{L}(X, Y)$ be as earlier and ρ_* be the fuzzy norm on $\mathcal{L}(X, Y)$. Then $P_{\varepsilon}^*(f) = \varepsilon \|f\|$.

For a sepecial case of Theorem 4.9 of [5], one can easily get following Lemma.

Lemma 3.5 Let $(X, \|\cdot\|_1)$, $(Y, \|\cdot\|_2)$ be normed linear spaces over the field K and $\rho_1 = \chi_{B_1}$ and $\rho_2 = \chi_{B_2}$, $B_1 = \{x \in X \mid \|x\|_1 \le 1\}$ and $B_2 = \{y \in Y \mid \|y\|_2 \le 1\}$. If $f:(X, \rho_1) \to (X, \rho_2)$ is a fuzzy continuous linear map, then $f:(X, \|\cdot\|_1) \to (Y, \|\cdot\|_2)$ is continuous.

Theorem 3.6 Let $(X, \|\cdot\|_1)$, $(Y, \|\cdot\|_2)$ be normed linear spaces over the field K and $\rho_1 = \chi_{B_1}$ and $\rho_2 = \chi_{B_2}$, $B_1 = \{x \in X \mid \|x\|_1 \le 1\}$ and $B_2 = \{y \in Y \mid \|y\|_2 \le 1\}$, $\mathcal{L}(X, Y)$ be as earlier and ρ_* be the fuzzy norm on $\mathcal{L}(X, Y)$.

If $(Y, \|\cdot\|_2)$ is complete, then $(\mathcal{L}F(X, Y), \rho_*)$ is fuzzy complete.

Proof. Fix $\alpha \in (0, 1)$ and let $\{(f_n, \alpha_n)\}$ be a fuzzy α -Cauchy sequence of fuzzy points in $(\mathcal{L}F(X, Y), \rho_*)$. For every $t \geq 0$, there exists a positive integer M such that $n, m \geq M$ implies $\alpha_n \wedge \alpha_m \leq \alpha$ and $P^*_{(\alpha_n \wedge \alpha_m)} - (f_m - f_n) = \sup_{E < \alpha_n \wedge \alpha_m} P^*_E(f_m - f_n) = \sup_{E < \alpha_n \wedge \alpha_m} \mathbb{E}\|f_m - f_n\| = (\alpha_m \wedge \alpha_n)\|f_m - f_n\| < t$. That is, $\{f_n\}$ is a crisp Cauchy sequence in $(B(X, Y), \|\cdot\|)$. Since B(X, Y) is complete, there exists $f \in B(X, Y)$ such that $\|f_n - f\|$ converges to 0 and $\alpha_n \|f_n - f\|$ converges to 0. Therefore, for every $t \geq 0$, there exists a positive integer M such that for $n \geq M$, $\alpha_n \leq \alpha$ and $P^*_{\alpha_n} - (f_n - f) = \alpha_n \|f_n - f\| < t$. Hence $\{(f_n, \alpha_n)\}$ converges to (f, α) with respect to the topology τ_p . Therefore $(\mathcal{L}F(X, Y), \rho_*)$ is fuzzy α -complete for each $\alpha \in (0, 1)$. This complete the proof of the theorem.

Definition 3.7 [3]. Two fuzzy norms ρ_1 , ρ_2 on X are said to be equivalent if $\tau_{\rho_1} = \tau_{\rho_2}$.

Theorem 3.8 ([3] corollary 4.9). The fuzzy norms ρ_1 , ρ_2 on a linear space X are equivalent if and only if for each $\theta \in (0, 1)$, there exists t > 0 such that $\theta \wedge \rho_1(tx) \leq \rho_2(x)$ and $\theta \wedge \rho_2(tx) \leq \rho_1(x)$ for all $x \in X$.

Theorem 3.9 Let ρ be a lower semi-continuous fuzzy norm on a normed linear space X and have the bounded support. Then it is equivalent to the fuzzy norm χ_B , where B is the closed unit ball of X.

Proof. Let $\theta \in (0, 1)$ be given. Since ρ is lower semicontinuous. $\rho_{\theta} = \{x \in X \mid \rho(x) > \theta\}$ is open. Thus there exists $t_1 > 0$ such that $t_1^{-1}B \subset \rho_{\theta}$.

Hence for every $x \in X$, $\theta \wedge \chi_B(t_1 x) = \theta \times \chi_B(t_1 x) \leq \rho(x)$.

Since ρ has the bounded support, there exists $t_2 > 0$ such that supp $\rho \subset t_2 B$ and so $||x|| > t_2$ implies $\rho(x) = 0$. Then we have $\rho(t_2 x) \le \chi_B(x)$.

Take $t_{\theta} = \max(t_1, t_2)$. Then $\theta \wedge \chi_B(t_{\theta}x) = \rho(x)$ and $\theta \wedge \rho(t_{\theta}x) \leq \chi_B(x)$ for every $x \in X$. By the Theorem 3.8, the proof is completed.

Theorem 3.10 Let ρ_1 , ρ_2 are lower semi-continuous fuzzy norms on normed linear spaces X, Y respectively and have the bounded supports on X, Y respectively. If $(Y, \|\cdot\|)$ is complete, then $(\mathcal{L}F(X, Y), \rho_*)$ is fuzzy complete.

Proof. By Theorem 3.9, ρ_1 is equivalent to the fuzzy norm χ_{B_1} and ρ_2 is equivalent to the fuzzy norm χ_{B_2} . Also, by Theorem 3.6, $(\mathcal{L}F(X,Y), \rho_*)$ is fuzzy complete.

Corollary 3.11. Let X be a normed linear space on K and ρ_1 a fuzzy norm on X. If ρ_1 is lower semi-continuous and has bounded support, then $\mathcal{L} F(X, Y)$ is fuzzy complete.

REFERENCES

- 1. A.K.Katsaras and D.B.Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J.Math.Anal.Appl. 58(1977), 135-146.
- 2. A.K.Katsaras, Fuzzy topological vector space I, Fuzzy sets and systems 6(1981), 85-95.
- 3. A.K.Katsaras, Fuzzy topological vector space II, Fuzzy sets and system 12(1984), 143-154.
- 4. S.V.Krishna and K.K.M Sarma, Fuzzy topological vector spaces-topological generation and normability, Fuzzy sets and systems 41(1991), 89-99.
- 5. S.V.Krishna and K.K.M Sarma, Fuzzy continuity of linear maps on vector spaces, Fuzzy sets and systems 45(1992), 341-354.
- 6. G.S Rhie, B.M Choi and D.S. Kim, On the completeness of fuzzy normed linear spaces, to appear