TEFALT A7 2%
19943 94 pp. 183-200

Sequential Designs for Complex Computer Experiments with
an Application to a Nuclear Fusion Modell)

Jeong-Soo Park?

Abstract

Data-adaptive sequential suboptimal designs for very complex computer
simulation codes are considered based on a spatial prediction model. These designs
are constructed for two simulators of the computational nuclear fusion devices
model. The difficulty of constructing the optimal designs due to the irregular
design region, and its alternatives are also discussed with some computational
algorithms for obtaining the designs.

1. Introduction

Computer simulation is widely used for prediction of the behavior of complex system,
where analytical solutions are difficult or impossible to obtain for system study. Advances
in computing facilities allow programming very complex simulation codes. The time and
effort needed to develop simulation models and to experiment with them has always been a
major concern. Thus one aim of applying statistical methodologies to simulation has been to
reduce the time spent in simulation life cycle and to help the simulationist and end user at
various phases of simulation studies.

One feature of a computer simulation experiment, different from a physical experiment, is
that the output is often deterministic ~ the response is observed without measurement
error. There is of course stochatic simulations in which random errors are involved in the
responses. Moreover simulation codes are often computationally very expensive to run.
Thus a careful selection of inputs and an efficient analysis of its outputs are necessary.
This is a statistical design and analysis problem for a complex and deterministic simulation
experiments. In this paper, we mostly concentrate on the sequential construction of efficient
statistical designs for computationally very expensive computer experiments, based on a
spatial linear model.

The research described here was motivated by a nuclear fusion research which needs to
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estimate the universal constants in the simulation code. There is a very complex computer
simulation code known as BALDUR (Singer et. al., 1988) which was implemented based on
a comprehensive mathematical model for the nuclear fusion devices (called tokamaks). This
simulation code is computationally very expensive, and a single run of the code requires
about five minutes of CPU time on a super-computer (CRAY-Y/MP).

One of the simple measures of energy efficiency in tokamak is the global energy
confinement time. The theoretically-based confinement model may be written as (Kaye and
Goldston, 1985):

1e=f( ", P,I,N,B),
where f is a known function which is calculated by a simulation code (called BALDUR),
P is the input total power, [ is the plasma current, B is the electron density, is the
magnetic field and c¢'=( ¢1”, ¢, 3, ca’) are the adjustable parameters determining

energy transfer known as drift waves, rippling, resistive ballooning and critical value of m;,

respectively. There is also a large experimental database of results from nuclear fusion
reactor. The experimental data were taken from the database collected by S. Kaye for two
tokamaks: 32 observations from ASDEX tokamak in Germany and 42 observations from
PDX tokamak in Princeton.

A probably well known design for deterministic computer experiments is Latin-hypercube
design (LHD) which was introduced by McKay, Beckman and Conover (1979). They
illustrated that LHD is better than random sampling for computer experiments, and this
property was theoretically proved by Stein (1987), and Owen (1994). Another interesting
designs are minimax and maximin distance designs by Johnson, Moore and Ylvisaker
(1990), and maximum entropy design by Shewry and Wynn (1987).

We model the response of computer simulation code as the realization of a stochastic
process, which has been successfully used in design and analysis of computer experiments
(Sacks, Welch, Mitchell and Wynn, 1989). Based on this model, an initial optimal design is
constructed, and it is then sequentially updated. The spatial model to approximate the
complex simulation code and the basic ideas of sequential (IMSE and MMSE) optimal
designs are discussed in the next section. In Section 3, the procedure of constructing the
actual sequential optimal designs for the BALDUR code are presented. Finally, Section 4
contains discussion and future research.

2. A statistical model and optimal designs for simulation data
2.1 A Gaussian spatial linear model

We use a spatial regression model which treats the response y(x) as a realization of a
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random function superimposed on a regression model,

K
y(zg)=],§[5jfj( X)+Z(x)+E, (2.1)

where f’s are known functions and B’s are unknown regression coefficients. Here the
random process Z(.) representing the systematic departure from the assumed linear model
is assumed to be a Gaussian process with mean zero and covariance cov(t,u)=0’R(¢t,u)
between Z(t) and Z(u), for t=(t1,..ta), u=(u1,..,uq), where d is the dimension of ¢
and u, 0% is the process variance (a scale factor) and R(¢,u) is the correlation function.

The measurement errors € are assumed to be uncorrelated, mean zero normal random

variables with constant variance 0%, and assumed to be independent of Z. See Cressie

(1990) or Ripley (1981) for details of this spatial linear model, and Sacks, Welch, Mitchell
and Wynn (1989), and Currin, Mitchell, Morris and Ylvisaker (1991) for its application to
design and analysis of computer experiments.

Some possible choices of correlation function are from the power exponential family
which is given by

d
Rt u)= EXp[_’Z;edti‘Uilz] 22)

where 8 = 0. The non-negative parameter 0 determines the covariance structure of

7. small 8 reflects large correlations between nearby observations while large 8 reflects

small nearby correlations (see Sim, Park, and Bai, 1994 for an illustration of this effect).
Once a correlation function and its parameters in (2.2) are specified, one can optimally
predict y(x) based on the model (2.1) using the observations y(s). Now define the times

n X n matrix V by

V = [R(s;s)] }:;§:+721, (2.3)
where 1% = o /02, and a n X k matrix F be so called a design matrix, where
(s1,..,5n) are the design sites. For any prediction site x, the n X 1 vector v . and
k x lvector fx are defined by px = [R(syx),..,R(sn,)], fx = [fi(x),..fu(x)],
respectively. Here v x is a correlation vector between design sites and a prediction site x.

Then the best linear unbiased predictor (BLUP) of y{x) given the observation vector y is
(see Ripley, 1981, pp. 44-58)
’ - V X
L0

LB+ vVi(x-FB,

-1

y (x)

f
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where B = (FVIF)'FVly is the generalized least squares estimator of B .The
normalized mean squared error of the prediction of y(x) is
mse(x) =FEoly(x) -y(x)1% o?

= R(x ,x) - [y;, [ [; g] _l[ 2"] (2.4

2.2 Minimum IMSE design

Of the many possible design criteria, we minimize the integrated mean squared error
(IMSE) of prediction for a design S,

IMSEs(S) = Lmse(x)du(x), (25)

where @ is the design region, and ¢ is a "weight measure” which may be the empirical
measure of uniformly distributed random points (see Section 3 and Figure 1), or of
"semi-random” points (see Figure 3) which are crossproduct of uniform random samples on

the set of allowed values (¢) for the ¢* and values of P, I, N and B in the data

base. Note that neither mse nor IMSE depend on the data vy nor on the unknown

parameters B and 02, but its are dependent on 8 and design S. This makes it possible

to design an experiment (for a specified value of 8) before taking the data, ie., to select

the design sites S which minimize some criteria such as IMSE and maximum mse
(MMSE) (see Sacks, Schiller and Welch, 1989). We always restrict the design points to lie
in the prediction region. Since (2.1) is a spatial linear model, our optimal designs are
basically the "spatial designs” which are extensively considered in Ripley (1981), and Sacks
and Schiller (1988). Sacks, Schiller and Welch(1989) illustrated that minimum IMSE designs
based on the model (2.1) is better than response surface designs based on classical
regression model, and Welch, Yu, Kang and Sacks (1991) have applied the above method
to a very large scale integrated circuit design problem. Sim, Park and Bai (1994) proposed
minimum IMSE Latin-hypercube design which is selected to have minimum IMSE among
all possible Latin-hypercube designs.

In our tokamak example, it is difficult to evaluate the integration (2.5) analytically over
the design region €, because @ is a nontrivial constrained region (see (3.2) or Figure 1).
Initially we approximated (2.5) by Monte-Carlo method using a uniform measure on @.
Later we realized that we really cared about predictions at points (¢, P, I, N, B ) in
data base. Therefore, we used the empirical measure of semi-random points (which are
crossproduct of uniforrn random samples on the set of allowed values (¢) for the ¢’ and

values of P, I, N and B in the data base) as the following manner:



Sequential Design for Computer Experiments 187

Step 1. Construct m (m=1000, say) d-dimensional "semi-random” vectors (see Figure 3)
as mentioned in the above, and denote them x; j=1,...m.

Step 2. Approximate the integral by
f mse(x)di(x) =~ L f:mse( Xj). (2.6)
m j=1

To minimize criterion (2.6) as a function of the nXxd design—point coordinates, we have
mainly used Cox and Chang’s algorithm (1989) to efficiently compute m MSE’s and a
quasi-Newton optimizer (Gill and Murray, 1972) in NAGLIB (1984). Because it is difficult
to obtain the explicit form of first derivative of IMSE, the optimizer used finite difference
approximation to the derivative. Computing time to minimize the criterion(2.6) is formidable
since it involves nXd dimensional global optimization problem (n =10, d =8, in our first
example), even though we used Cox and Chang's efficient algorithm. This difficulty
encourages some alternative design strategies. Thus a less slow global search plan on the
construction of optimal design is given below.

Even though it is supposed that an optimal design is obtained by running the optirnizer
for a set of starting values, there is no guarantee that the design so obtained is a global
minimizer of IMSE. To circumvent the above difficulty and not to waist computing time
due to strange initial values, the following procedure was actually adopted in our example.

Step 1. Run the optimizer for k (2 or 3) different sets of random (or chosen by
eyeballing) initial values.

Step 2. Stop at a moderate iteration limit and choose a design which has minimum of
IMSE among those.

Step 3. Take the design selected at Step 2 as a starting design and run it.

The computing time is still formidable. A plan that may possibly achieve both time
savings and globality is discussed in Section 4.

Note that o2 plays no role in this minimization, however the knowledge of 8 and
1% = 02 / 0% is crucial. Because 8 is generally not available for the initial design stage, a

robustness study, described in Sacks, Schiller and Welch (1989), may be useful to choose
8. In our example, we used an rough estimate of 8 based on a previous similar work

and a prior information on 02 given by a BALDUR specialist at the initial design stage.

2.3 Mimimum MMSE and sequential designs

As an alternative design criterion, we minimize the maximum mean squared error
(MMSE) of prediction. This MMSE can be obtained, similarly as done in IMSE calculation
because of irregularity of the design region, by the following formula,
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MSE max (S) = T:E mse( x;),

where x; j=l,.,m , are d-dimensional semi-random vectors. Comparisons of MMSE and

IMSE for discrete designs were made by Sacks and Schiller (1988). MMSE is also used
as a measure of accuracy of a given prediction model (see below and Section 3).

After collecting some observations based on the initial optimal design, we estimate
parameters (B, 0, 8 and v?) of the spatial linear models using the maximum
likelihood estimation method (see Park and Cho, 1994, for details). Then we constructe so
called data—adaptive sequential optimal designs by the following procedure:

Step 1. Find an appropriate prediction model and estimates of parameters based on
previous design (ny points, say) by suitable analysis methods (for details, see Sim, Park
and Bai, 1994).

Step 2. Check MMSE, and stop constructing the next stage design if MMSE is smaller
than a preassigned target value. Otherwise, go to the next step.

Step 3. Use these model and estimates to choose the next stage optimal design ( n2

points, say) under the condition that the previous design is given (i.e, update nz more
points to the previous design to make n1 . nz points). Then go to the Step 1.
In constructing the above sequential designs at the Step 3, the first n1 design points are

fixed, and so the covariance matrix, mse and IMSE corresponding the first n1 points are
not changed. This fact allows us to save much computer time by calculating IMSE for the
new n2 points, and by updating it to the already calculated IMSE (for the first ni points).
For this purpose, we mainly used Cox and Chang’s (1989) updating algorithm to save
computing time. Their algorithm updates (partial) Cholesky and QR decompositions when
new design points are added to the existing design. There, the linear model for the mean
function in (2.1) is handled by a QR decomposition and the stochastic process (Z) is
handled by a Cholesky decomposition (see Cox and Chang (1989) for details of the
algorithm).

When the obtained model is complicated, computing time for constructing the next stage
optimal design is extremely expensive. In that case, a simple model is used to save CPU
time instead of the best (complicated) model.

3. Sequential sub-optimal designs for nuclear fusion simulators

In this section, the actual data-adaptive sequential designs, disscussed in the above
section, for 2 tokamak (ASDEX and PDX) simulators are presented.
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In running BALDUR code, we used c¢i1,c2, c¢3, cq4 (parameters) and P, I, N and B
(real variables) as input variables. Following the nuclear fusion specialist, we transform
P,I, N and B to logwP , logw/ , logiwN , and ,log10B to define the input
variables. Also log 10T is used as a response y(x) .

Let Tk be a true (theoretical) energy confinement time. Then our observation T g from

BALDUR code is equal to (l1+€) Tz , where £ is a random variable thought of as
measurement error, because of the Monte-Carlo integration in BALDUR code. It is known

that var(g) = .0025 from the previous experience. Then

logte = log(l+e) 1
=T§181_0(1°g“(1t8) + log Tk) (3.1

1 *
%m( +£ + log.TE)

so that 0% for log 10TE is approximately equal to .0005.

As discussed in Section 2.3, we will stop constructing the next stage design if MMSE,
calculated for a given prediction model, is smaller than a target value. Tokamak specialist
allows 10% maximum prediction error for Tz. Then by the same calculation as (3.1), we

obtain approximately .002 as a target value.
3.1 Sequential designs for ASDEX Tokamak simulator

The design region Q is as follows :
0Lc1, 352, 0S¢z S5, 1054514,
2SP<4, 18<I<42, 2<N<L106, 14<B<26
with additional constraints

<25, 515625 < Iis 8.25. (32)

The upper bound of second constraint was changed, by examining the data base, to 11.3
(which is the maximum of B /I in the data base) after several sequential design steps.
Actually ¢4 was set 1.0 by default until after we obtained 30 design points. The
2-dimensional projections of Q with new upper bounds are shown in Figure 1 in which
1000 random numbers generated over Q are plotted. Input variables are shifted and
rescaled by, for example

- log 108 - 10&10(2.6/1.4) -5
x8 log 10(2.6) o
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Figure 1. Two-dimensional plots of an irregular design region

for ASDEX tokamak simulator.
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so that the prediction region is in [-5, 519 (ie,xs€[-5, 5]1), , where d is the

number of input variables (here d =8).

(1) Initial Design

We found initially 10 design points which minimize IMSE of the formula (2.6) that was
computed using 1000 uniformly distributed random points over . We used a constant
model ( y(x) =B+Z(x)+£ ) and covariance function (2.2), with d=7, a common 8=5 (all
B;'s are set to be equal), 0=1 and Y?=.001. These values were obtained from some
previous similar experiments. After running the BALDUR code 10 times, we collect 10
1Tg's and computed the MLE using constant model:

8=013, ©%=037, 7°=~00, B=-128
Next stage design was constructed by using these estimates in the same model.

(2) The Second and Third Stage Designs
Based on the previous 10 design points and estimates under the constant model (with a
common 0), 5 more design points and observations are obtained. Using these 15 data, 7

different 8 estimates are computed. Then using the above 7 B’s, still under constant
model for the mean, we obtained 5 more sites to make 20 points. Because B3
(corresponding c¢z2) =00, only 6 variables (excluding c2) were used in the optimizer. Then

we inserted 5 random points in [-5.5] for c¢2. Two-dimensional plots of this design is

shown at Figure 2.

We built a linear model based on 20 observations (see Park, 1991, for details of selecting
a good model based on the cross validated mean squared residual), however the MMSE of
the model is still large (around 0.0065). So we decided to obtain 10 more points for a total
of 30 design sites based on the obtained linear model.

(3) The 4'th Stage Design and Change of Region

The former model (with a common 0) in the third stage was used in searching for the
next design (5 more points for a total of 35 design sites). A quadratic model (based on 35
observations} with selected x's and 8’s was turned out to be the best (based on the

cross-validated mean squared residual), but still with 0.005 MMSE.
At this time, a numerical algorithm to solve differential equations in BALDUR code was
changed to save running time. Four more experimental runs were done to check how much

difference resulted in Tg from the previous code (up to now, we have 39 observations).
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The differences (4.0 % in average) can be thought of as measurement error. A new
variable €4 was introduced with range 1.0 through 1.4. Because the value of €4 was set

10 by default in the previous runs, two experiments were done setting the value equal to
1.4. The “‘semi-random” points (see Figure 3 for PDX) which are crossproduct of random
vectors (corresponding to ¢) and experimental data (corresponding to P, I, N and B),
were used to calculate the IMSE as in (2.6).

(4) The 5'th Stage and Final Designs

Nine more points were obtained to make a total of 45 design sites. Because of the
computational burden, a constant model with 7 8’s was used after shifting some zero 8's
to 05. Many changes at the above step lead to little improvement in MMSE (.0035) for the
best prediction model selected based on 45 observations. We then obtained 10 more points
to make 55 observations.

The target MMSE (002) was achieved in the best model (0019) so that we can
tentatively stop the sequential design process. The final 55 design points with
2-dimensional plots of the final 55 design points is given in Figure 4.

3.2 Sequential designs for PDX Tokamak simulator

The design region € for PDX was same with ASDEX region except the constraint,
which was changed from (3.2) to 4375 £ B/I £ 7.0. After 30 observations were obtained
over the above region, ) was changed, by adapting the minimum and maximum values of

variables in the data base, as follows :
6 £ P<L53, 2<51< 49,
2< N< 98, 68< B< 24,
with constraints

N <90, 30¢< % < 725

and others are same. Then 20 more data were taken over the new design region. The

construction procedure of sequential optimal designs for PDX simulator is almost same as
the ASDEX procedure, so details are omitted here (see Park, 1991 for details).
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4. Discussion and future research

In this section, we describe some problems arising in the previous work and give
suggestions to overcome those difficulties. Future studies are also described,

4.1 Time saving with IMSE criterion

As mentioned in section 2.1, an efficient strategy for optimal design is needed, because
running an optimizer with the IMSE function evaluated by Eq. (2.6) with 1000 random
points is expensive. This problem is more serious when number of input variables are large
and/or the model used in the design stage is complicated. Actually, it took about 500
seconds CPU time in a super-computer CRAY-Y/MP to find a 10-point (locally) optimal
design with d = 8 under the constant model with several 8's. (Note that it was a 10x8
dimensional optimization problem with a computationally expensive objective function.)

To overcome this difficulty, first of all, we have to understand the algorithm of the
optimizer very well to use it effectively, for example, by scaling variables appropriately and
by setting some initial parameters and stopping rules appropriately. Practical experience
with a high-dimensional numerical optimizer is helpful.

Even though the nature of the problem is constrained minimization, at first the
unconstrained routine (E04JBF in NAGLIB, 1984) was used, because it was expected that
the optimal design points must be in the region. In second stage design for the ASDEX
tokamnak, however, optimal design with a distant out-of-region point was observed. This
unexpected phenomenon can be, by experience but not rigorously, explained by the
existence of measurement error and/or linear model terms in the model. More study is
needed to clarify this observation. Because of the convenience of implementation, an
unconstrained routine with penalty was used instead of a constrained one. However
constrained optimizer should be considered for the next tokamak if time savings can be
realized from using it.

When the model used in the design stage is complicated, an alternative model which is
simple, but does not lose so much information compared to the original one, can be
considered. Actually, in some of our sequential design stages we used a constant model

instead of the best linear model with several 0's. We propose to investigate the effect of
linear terms in the model to the IMSE based design.

4.2 Approximated optimal design

The most time consuming part is the evaluation of IMSE, because m (say 1000) times
calculations of MSE are needed for one evaluation of IMSE. Therefore fewer (say 1 = 300)
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random numbers can be used to calculate IMSE (or MMSE) in (2.6) if more error due to
poor approximation can be tolerated. Now our suggested plan to achive both time saving
and globality is as follows :

Step 1. Choose k (say 4 or 5) different initial designs and run the optimizer (until
converge) with IMSE calculated based on (=300) random points.

Step 2. Choose a design which has a minimum among the k (sub-optimal) designs
obtained in the above manner and use it as a starting point to run the optimizer with
IMSE based on m(=1000) random points.

For using the above procedure and the approximation (2.6), a simulation study as well as
the following theoretical support are needed : suppose that f.(S) converge to f(S) at a
design S in a region D, and that

Sn = arg Isnelg Ms,

S = arg g, AS),

then does the design sequences Sn converge (in some sense) to S°? In our example,
f2(S) is an IMSE calculated by n random points as in (2.6), f{S) is the exact IMSE in
(25) and { Snlis a sequence of the ‘‘sub-optimal” designs. Alternatively, one may be
more interested in how far f(Sy) is from f(S™).

Instead of constructing n-point designs all at once, n times sequential design by
updating one point at a time based on IMSE (or MMSE or others) can save lots of

computing time. A trade-off, however, between time savings and efficiency of the one-point
sequential design compared to non-sequential design should be considered.
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