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ABSTRACT

In this paper we extend Kim and Pollard’s cube root asymptotics to
other rates of convergence, to establish an asymptotic theory for a mul-
tidimensional mode estimator based on uniform kernel with shrinking
bandwidths. We obtain rates of convergence depending on shrinking
rates of bandwidth and non-normal limit distributions. Optimal de-
creasing rates of bandwidth are discussed.

KEYWORDS: Empirical process, Shrinking bandwidth, Kernel mode

estimators, Functional central limit theorem:.

1. INTRODUCTION

Chernoff(1964) suggested a mode estimator of a distribution on the real line

based on a uniform kernel K,(-,8) = --[f — a,0 + a]. (We adopt set notation

for indicator functions and use linear functional notation for expectation.)

He showed that 6, maximizing %Zf;l K,(&,80), &’s are data points, had a
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n~Y/3 rate of convergence and a limit distribution determined by a functional
on a gaussian process, using one dimensional techniques based on a Markov
property and semi-martingale inequalities. He also considered the case where
the bandwidth, a,,, decreased with sample size, showing the estimator had rate
of convergence depending on a,. _

Using empirical process technique, Kim and Pollard (1990) established an
asymptotic theory for multidimensional estimators defined, in a similar way
to Chernoff’s estimator, by maximization of stochastic processes based on em-
pirical processes. As an example they showed that a multidimensional ana-
logue of Chernoff’s mode estimator had a n=1/3 rate of convergence and non-
normal limit distribution. However, since they considered only the case where
0,(n~'/3) asymptotics obtained, we could not apply their method for the prob-
lems like mode estimators based on kernels with decreasing bandwidth, where
the estimators had other rates of convergence.

In this paper, with a slight modification of Kim and Pollard’s argument,
we establish an asymptotic theory for multidimensional mode estimators based
on uniform kernels with shrinking bandwidths. As a possible ‘uniform kernel’
function in ®?, we adopt the indicator function of a ball with decreasing volume
a, in examples through this paper. Any convex set of fixed shape may be used
instead of a ball, however, the symmetry property of a ball make it simpler to
use.

Let {£;} be a sequence of independent observations from a fixed distribution
P with a unique mode 6, on R?. For a decreasing sequence of real numbers
{a,}, define a kernel mode estimator 6, as a maximizing value of

! il{(i”—e), (1.1)

. 1/d
cnay, i1 an/

where the function K is an indicator function of a ball with radius 1 centered
at origin (the ball can be replaced by any fixed convex set) in R¢, and ¢ is a
constant making sure that [ 1K = 1.

Let 0, be a maximizing value of the expected value of (1.1). Then (én —b)

A

can be decomposed into two parts: (6, — 6,,) which is a probabilistic part and
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contributes to the variance of the mean square error of 4,; (6, — 6o) which is a
non-random, bias part. The next two sections give limit theorems for (én —6,)
using inequalities already available in the empirical process literature. We also
discuss on optimal rates of «,. In Section 4 we examine two two-dimensional
mode estimators. One is a symmetric case where 8, = 6y, using the standard
bivariate normal as a underlying distribution. The other is an asymmetric case

where we should also deal with the non-random part carefully.

2. RATE OF CONVERGENCE

In this section we establish consistency and a rate of convergence result
for 6,, which are defined by the location of the maximizing value of stochastic
processes derived from empirical processes. As an appropriate space for the
sample paths of the stochastic processes, we define X" to be the set of all locally
bounded functions on R? equiped with the topology of uniform convergence
on compacta. Then 8, can be represented by means of the argmaz functional
on X, which assigns the location of the maximizing value of each element
of X. However, there are some difficulties involved in the definition of the
argmaz functional for processes whose paths do not achieve their supremum,
or do achieve a maximum at several points in R¢. As illustrated in Kim and
Pollard(1990), we avoid them by proving limit theorems for random elements
of R that come close enough to maximizing processes with paths in X.

Define the empirical measure P, as the random probability measure that

puts a mass % on each of &,...,¢, from P; define the empirical process as the

signed measure v,, = \/n(P, — P).

Let f.(-,0) = K((—;—}%), then 6, maximazes P, f,(-,0) = LY fa(&:,0) and
#,, maximizes an(-,ﬂ)n = [ fu(-,0)dP. To prove (én — 6,) converge to 0 we
need to show that P, f,(-,0) is close to P f,(-, ) uniformly on #. Define a class

of functions indexed by a subset © of ®¢,

Fo=(fal0):0€0). (2.1)
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For consistency of 0, we need the following Lemma (a modified version of
Theorem I1.37 in Pollard(1984)) which gives a uniform bound for P, f,(-.8) —
Pf.(-,6) over 0.

Lemma 2.1. For each n, let F, be a VC subgraph class of bounded
functions. Let {¢,} be a non-increasing sequernce of positive numbers for which
anel > n"tlog n. If Pf% < a, for each f, in F, then

Pnfn“an

sup < €, almost surely.
Fn

The symbol > means that the left hand side is of bigger order than the
right hand side. That is, @, > b, implies Z—Z = o(1).

The VC subgraph class is one of several VC related classes defined by Dud-
ley (1987) as variations of the VC class of sets introduced in Vapnik and Cer-
vonenkis (1971). Since the definition of VC subgraph class (see Dudley(1987))
involves some combinatorial condition which is not quite important here, we
omit them. Instead, we give several examples and state some useful properties
of a VC subgraph class, which will be important for our proofs.

One simple example of VC subgraph class is a class of the indicator func-
tions of balls in R%. More generally, a class of indicator functions of sets of
any VC class (class of cylinders, class of convex sets with same shape and so
forth) is a VC subgraphclass. Also, any subset of a finite-dimensional vector

space of real functions on a set X is a VC subgraph class.

For a class F of functions, define the (natural) envelope F as F' = sup + |f|.

A VC subgraph class has the following properties:

o If 7 is a VC subgraph class, then so is {|f] : f € f} with the same

enveolpe.

o If 7, with envelope F, is VC subgraph class then so is {fl —fa: fi € f}

with envelope 2F.
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The following Theorem proves a stronger one than consistency. To under-

stand the reason why we do it this way, consider a simple case where f, is
1/d

an indicator funciton of a ball in ®?¢ with radius a,
1/d

n

. Since f, shrinks with

, 1t is natural to expect that |én —6,| tends to stay within

al/? neighborhood of origin. Let §, = al/¢,

diameter of order o

Theorem 2.2 (Consistency). For each n, let F, defined (2.1) be a VC
subgraph class of indicator functions. If there exists a non-increasing sequence

{€n}, for which «,€e2 > n~!logn, such that

Pf.(-,8,) — sup Pf.(-,0) > 2¢,c,, eventually, (2.2)
[6—0n|>6n

where &, = al/¢, then

]én -6, < é, almost surely.

Proof. Lemma 2.1 gives that

Pnfn_—an

< €pa, almost surely.

sup
Fn

Together with (2.2) this implies that with probability one it is eventually true
that

Pafa(-,02) = Puful-0)
> Pfu(-,00) = €ncen
> IG—St;tllp>5n Pf.(-,0) + enay
>  sup  Pofa(-,0).

|0““9n |>5n

It follows that with probability one,

16, — 0, < é,, eventually.
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Before we give a rigorous proof of the rate of convergence, it is quite instruc-
tive to start with a heuristic argument that suggests the rate of convergence
of én.

Let Y, (0) = P, fo(-,0)— Po f0(+,6,), then én maximizes Y,. To find the rate
of convergence we first sketch the limit behavior of ¥,,. Decompose Y.(6) into

two parts, a deterministic trend and a random perturbation, as follows:

Under a smoothness assumption on P that P(fn( 0) — fu(-, Hn)) 1s twice dif-
ferentiable at 0,, and the second deriavative is approximately linear in «,. For
some positive constant ¢, the trend of Y, the first part of (2.3), is approxi-

mately

—cran|f — 6, 2.

For each 6 near 6,,, the central limit theorem gives that the perturbation of Y,
the second part of (2.3) is approximately normal distribution with mean zero
and variance n‘lP(fn(-,H) - fn(-,Hn))z. The function (fn(,(g) — fn(-,ﬁn))2
is the indicator function of symmetric difference of two balls. When @ is
close to 8, , the volume of the symmetric difference can be obtained by a
surface integration around the boundary of a ball with volume «,. Since the
magnitude of the boundary of the ball is of order o!¢=/?  the volume of the
symmetric difference is roughly O(a&d‘l)/dw — Hnl) . Let 8, = ald=V/4  then
P(fa(10) = fu(-,0,))" = O(Bul0—01). So Y, (6) has a mean —cyan | — 0,2,
a parabolar maximized at 6,, which is randomly perturbed by a process with a
standard deviation n=/?31/2|10 —6,|'/2. When |0 —0,| gets big, the downward
tendency of the parabola overwhelms the random perturbation. The maximum
of Y., should occur when two terms in (2.3) are of about the same order. That
is, when «,|0 — 6, |* is of the same order as n‘1/25711/2|9 — 977,[1/2. This implies
that |0 — 6,| is of order n=Y/3a;2/331/3,

Put 7, = n~ Y3 ¥3p1/3 = n~13a-(#+1)/34 T, prove +, rate of conver-

gence, we need to give a uniform bound on the perturbation part of (2.3).
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The following two maximal inequalities (Maximal Inequality 3.1 of Kim and
Pollard) provide useful bounds for a stochastic process (P, — P)f indexed by
a class of real-valued function F. More general forms and their proofs can be

found on Pollard(1989).

Maximal Inequalities 2.3. Let F be a VC subgraph class of functions
with an envelope F', for which PF? < oo. Suppose zero function is included

in F. Then there exists a function .J, not depending on n, such that

(i) vV sup

P.f - Pf| < E P,,,FZ.](St}anf‘z/Pan) < JO)WPF?,

(i) nEsup |Bof — Pf[| < EP,F2J*(sup P.f*/ P.F?) < J(1)*PF*.
F F

The function J is continuous and increasing, with .J(0) = 0 and J(1) < oo.

Note that for a VC subgragh class F, the function J is the same for every
subclass of F.

Let g.(-,0) = fu(-,0) — fu(-,0,), and G, = {g.(-,0) : 8 € O}. Using
the Maximal Inequalities 2.3, outside of ~, neighborhood of 8, we establish a
uniform bound on the (P, — P)g,(+,0). For each R, we define a subclass G,(R)

of G, to be {gn(-,e) :0€0,16-6,] < R}, and its envelope G,(R) = sup |gn|.
Gn(R)
For each R, assume that G,(R) is measurable.

Lemma 2.4. Suppose for each n, {gn(R) : R < 6,¢ is a family of VC

subgraph classes with their envelopes G, (R), for which
PG,.(R)® < CRB,, forall R<§,

for a finite constant C' and some decreasing sequences 3, and é,. Then for

each € > 0 there exist random numbers {M,,} of order O,(1) such that
|Paga(-,0) = Pga-, e)l < en|f — 0n 2 + anyE M2, for |0 — 0, < 6, (2.4)

where v, = n~/3a;2/331/3,

7



258 JeanKyung Kim

Proof. Define M, (w) as the infimum of those values for which the asserted
uniform inequality holds. Define A(n, j) to be the set of those 8 in © for which
(4 = D <10 —0,] < jva. Then for constant mn, the probability P{M, > m}

1s less than or equal to

PP{36: | Pogn(-,0) = Pgu(+,0)] > ccvu[8 — 6, + auy?m?}
6"/"/71 ) )
< 3 P{30 € A(n,j) : (@n72) M Pugal-0) — Pga(-,0)] > e(j — 1)* + m?}.

J=1
To have the rate of convergence make some sense we may assume that 6, /v, —
co. The j-th summand is bounded by
_ 2 , ‘ 2\ 2
(an¥2)2E sup angn(-,e) — Pgn(-,H)‘ /<6(] —1)* + mz) .
0€A(n,7)
By the part (ii) of the Maximal Inequalities 2.3 and the assumption about
PG, (R)?, there is a finite constant €, such that the numerator of the last

expression is less than («,v2) *n~1C) jy,.8, = C1j. We can therefore ensure

that the sum is suitably small for all n by choosing m large enough.

With &, = a!/? and 8, = o{¥"1/? in Lemma 2.4, the following Theorem

gives n~1/3a7(#+1/34 rate of convergence for (én —6,).

Theorem 2.5 (Rate of convergence). If Pg,(-,0) has a negative defi-
nite second derivative matrix, —V,,, at 6, for which, lim,_., a 'V, =V, and
if

~

(1) bn = 0n + Oy(62),

A

(i) Pagn(-,0,) > sup Poga(-,0) - Op(anv?),

then under the condition of the Lemma 2.4,

~

0, =0, + Ou(71n),

where §, = a/? 8, = ol¢-V/? and Yo = n"V3a 233108 = n=1/3q-(d+1)/3d,

n
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Proof. Choose € so that Pg,(-,8) < —2¢ca,|0 — 6,|* in a neighborhood
of 8,, for which the assertion of Lemma 2.4 holds. Since b, =0, + 0O,(6,), by

Lemma 2.4,

A

Pﬂ.gn('yen) S Pgn(7én) + 6(171'9" - 9n|2 + aﬂ7121M3

Condition (ii) implies that the left-hand side is bigger than P.gn(-,6.) —
Op(0an72) = —0p(any?), the bound on Pg,(-,0) forces

6anlén - 9n|2 = Op(an’)/:),

from which the asserted rate of convergence follows.

3. WEAK CONVERGENCE

Results from Section 2 established the O,(7,) = Op(n~ /3a;;(d+1/3) rate
of convergence for (én —80,). The limit behavior of 'yn(én —8,) will be deduced
in this section, by an application of a slightly modified continuous mapping
theorem for the rescaled process

a 'Y Pugn (v, 0 +tyn), if 0, + 1y, € O
R €O
—00, otherwise
where g, (-, 0, +17,) = ful(-, 0n+17,) — fu(+, 0n). The process X,, can be decom-
posed into two parts: non-random mean part, a; 'y, 2Pgn(-, 6, + t7,); random
perturbation part, which is a centered process. Define the corresponding cen-
tered process
a1y (P, — P)gn(-, 0, + ty,), if0,+1ty, €0O
—00, otherwise
To prove weak convergence of the process X,(t), we adopt the definition weak
convergence proposed by Hoffman-Jgrgensen(1984) and disscused by Dud-

ley(1985). The sufficient conditions for weak convergence consist of two parts:
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convergence of finite dimensional distributions, which follow from the multi-
variate Central Limit Theorem; a uniform tightness condition, which will be
deduced from the maximal inequalities in Section 2. The following Lemma
(Theorem 2.3 in Kim and Pollard(1990)) provides those conditions easier to
check. Recall that X is the set of all locally bounded functions on R¢ equipped
with the topology of uniform convergence on compacta. We use a symbol ~»
for the convergence in distribution under the metric for uniform convergence

on compacta.

Lemma 3.1. Let {Z,(t)} be a sequence of stochastic processes with

sample paths in X'. Suppose:

(1) for each finite subset of S of R? there is a probability measure (), on X’
such that {Z,(t):t € S} ~ Q,;

(i) for each € >0, n > 0, and M < oo, there is a § > 0 such that

lim sup P{sup

Zu(s) = Zn(t)| > n} < e,

where the supremum runs over all pairs of s, t with max(|s,|t|) < M and
|s—t| < 8. Then there is a Borel probability measure Q with finite-dimensional
projections @, such that Z, ~» Q and ) concentrates of the separable set of

all continuous functions in X.

The following two Lemmas are designed to ensure that the process {W,(t)}

satisfies conditions (i) and (ii) of Lemma. 3.1.

Lemma 3.2 (Convergence of Finite Dimensional Distribution).

Let {W,(f)} be a sequence of processes defined on (3.2). Suppose :
(1) (8, + ty,) — interior point of ©.

(ii) H(s,t) = lim o7, *n " Pgu(-,0n + 59)gn (-, bn + t7,) exists.

n—oo
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Then the finite dimensional projections of the process W, converges in dis-
tribution to the finite dimensional projections of a process W (t) which is a

centered gaussian process with covariance kernel H.

Proof. For each fixed ¢, condition (i) ensures that for large n,

W, (t Z ;197 g€ 0 + 19) — Pgal&ir O + t30)]
=1
For each subset (t;,---,t;) in R, we want to show that

(Waltr), -+ Walti)) ~ (W(ta),-- -, W(th)).

Since a multivariate central limit theorem can be deduced from a central limit
theorem for each linear combination of the random variables it is good enough
to establish a central limit theorem for the triangular array {hn;},

k
Bt = a7 7707 30X [0 (6 O + t9n) — PGale, 0n + 1))

=1

for each choice of the constant {\; : j = 1,...,k}. These random variables

have zero means and their variance satisfying

n k k
Z Var(h,) = a;277;4n—1 Z Z AN [Pgn  O0n + 1590)gn (-1 0n + tiyn)

7=1]=1

k k
— Z Z )\J )\IH t;, ,
7j=11l=1
because Pgn (-, 0n+1;7.)Pgn(-, 0 +117,) term has a smaller order of magnitude
than Pg, (-, 0n +1;v0)gn (s 0n +tiys). Since g, is bounded, the triangular array,
{hn:}, satisfy the Lindeberg condition.

Lemma 3.3 (Uniform Tightness). For eachn,let G, be a VC subgraph

class. If
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(1) Pgn('va)'"gn('ve,)

= 0(10 - 0'|8,) for 0, ¢ near 0,

(ii) the subclasses G,(R) of G, have envelopes GG,(R) such that for some

finite constant C,

PG.(R)*<CRB, as R — 0,

where 3, = a{#"1)/4 then for each ¢ > 0, 7 > 0 and finite M > 0 there exist
no and 6 > 0 such that for n > ny,

P{A?]l\ldpé) ~Wn(t) — Wn(t')l > 77} <, (3.3)

where A(M,6) = {(t,¢') : |t| < M, |t'| < M, |t —¥] < §}.
Proof. Let H, be the class of all functions of the form
gn('v 0, + t'Yn) - g'ﬂ('v On + tl7n)7

with (¢,t') € A(M,$). Then M, has an envelope H, which is bounded by
2G,(M~,); thus PH? decreases like O(Ynfr). By the Maximal Inequalities
2.3, the probability in (3.3) is less than a constant multiple of

Esup o' v 2072, h,| < o'y VPR [(PRHZ)l/Z.](supPnhi/PnHz) :
Hﬂ Hn

Recall that v, = \/n(P, — P). Decompose according to whether P, H? <
d0Ynfn or not. Since sup Pnhfz < Panl, and ~, = n_1/3a52/3ﬁ711/3 the right-
H

hand side is bounded byn

53/2,7(1) + a,‘tlfyn_zn_l/z\/PHZ\/E.]Z(min(l, sup P, hZ /607.08,)),
H’,L

using the Cauchy Schwarz inequality. Since ajlv7%n"2,/PH? = O(1), it
suffices to show that sup Pnhf1 = 0p(7 ). Any function k, in H,, is bounded
Hnr
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by some constant K. Hence the expected value of sup P,h? is less than or

equal to

K IE sup Plh,| + KIE sup
Hrn Hn

Py lha] = Plha|-

By condition (i) and the definition of H,, the first term is o(,3,); the second
is less than Kn~='2J(1){/PH? = O(n""/?4,8,) by the Maximal Inequality 2.3
applied to the VC subgraph class {|hn| ch, € 'Hn} with the same envelope
H,.

Theorem 3.4 (Weak Convergence of X,,). If Pg,(-,0) has a strictly

negative definite second derivative, —V,,, at 8 = 6,, such that

lim a;an =V,

00

then under the condition of Lemmas 3.2 and 3.3, the process X,, defined in

(3.1) converges in distribution to the process
1
X(t) = —Et’Vt + W(t),

where W is a centered gaussian process with continuous sample paths and

covariance kernel

H(Svt) = JLI& a;2’7;4n—lpgn('7 971 + S7n)gn('79n + t'7n)

Proof. The assumption on Pg,(-,6) implies that as n gets big

1
X, (t) = o'y Pgn(, 0n + tyn) + Wo(t) = —§t'Vt +o(1) + W,(t). (3.4)

Lemmas 3.2 and 3.3 guarantee that the process W, satisfies the two conditions
of Lemma 3.1 for convergence in distribution of stochastic processes with paths
in X. Together with (3.4) this implies X,, ~ X, where X has the asserted

limit distributiomn.

The limit distribution of n_1/3a;(d+l)/3d(én — 0,) is obtained by a mod-

ified continuous mapping theorem. In Kim and Pollard (1990) Theorem 2.7

263
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accompanied with Lemmas 2.5 and 2.6 provides a perfect form for our appli-

cations. The following Theorem combines those theorem and lemmas. Let
71_1/3a;(d+1)/3d(én —0,) =1,.

Theorem 3.5 (A Continuous Mapping Theorem). Let {Z,} be

random maps into X" such that
L,
Z, ~ 7= —-2~t Vit + W(t),

where V' is a fixed positive definite matrix and W is a centered gaussian process

with continuous sample paths and covariance kernel H for which
H(kt,kt'y = kH(t,t") fork >0andt,t e R
Suppose {f,} satisfies the following;
(i) £ = Op(1);

(ii) Zn(n) > sup Zn(t) — u, for random variables {u.} of order o,(1).
4

ty o~ arg max(Z).

Note that the limit distribution of n“l/Ba;(dH)Bd(én — 0,) has a similar
form to that of the maximization estimators examined in Kim and Pollard
(1990). The only difference is the rate of convergence which depends on «,,.
Kim and Pollard (1990) anaylzed the mode estimator with o, = 1 showing
that it had a O,(n1/?) rate of convergence.

The optimal rate of o, is determined by way of minimizing the mean square
errors, which depend on the underlying distribution P. Suppose we use a
symmetric kernel K. If the underlying distribution has a symmetric density,
where 6, corresponds to the true mode 6, the optimal rate of o, is a constaunt.
For the case where an asymmetric underlying density produces a non-zero bias
term, |8, — 6| = O(a*/?) for some k > 1, the optimal rate of a, is n—%/(d+1+3k)
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When d = 1 and k = 2, which is the case Chernoff(1964) considered, our result,

a, = n~ Y% coincides with his.

4. APPLICATION

In following two Examples we use a symmetric kernel function. For each
6 in R? and n, let f,(-,0) be the indicator function of a closed ball, Uy(-, ),
with a center § and a radius \/a,. Then the class, F,, = {fu(-,0) : 0 € R*}, is
a VC subgraph class.

Example 4.1. Let P denote the standard bivariate normal distribution,
N(0,I), and P, be the empirical measure based on a sample {{;} from P.
Since the underlying distribution has a symmetric density p(-) and f,.(-,0) is
also symmetric, the maximizing value 6,, of P, f,(-,8) is fo = 0. So the optimal
rate of a, is constant, which leads to the cube root asymptotics.

With o, = 1 Kim(1988) analysed this mode estimator, giving a cube root
rate of convergence and a limit distribution as a argmax functional of a gaussian
process with mean —2e=/2 (I correct the wrong mean value of Kim(1988)) and
covariance kernel H(s,t) = e 2(|s| + |t| — |s — t]).

Example 4.2. As an asymmetric case in the real line, Chernoff(1964)
considered a case where a underlying density function is defined for some pos-
itive constants ¢; > 0 and ¢z > 0, p(x) = co — caz? + c32® + o(z?), for z near
zero. He noted that with o, = O(n‘l/s), the mode estimator Hn converged to
the true mode 8, at the O,(n~'/*) rate of convergence.

As a two-dimensional analogue we consider a case where a underlying dis-
tribution has unique mode 6, = 0 with a density p(z,y) = ¢o — c2(2? + %) +
e3(z + y?) + o(z® + y?) for |(x,y)] — 0. Assume that c; > 0 and ¢z > 0.
The density function is symmetric with respect to the line y = z in R? not
with respect to the origin, and decrease more rapidly (or slowly) on quater

plane, z < 0, y <0 (or z > 0, y > 0). We assume whatever conditions on
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the density function outside the small neighborhood of origin to ensure that
] = 0,(1).

To prove limit theorems, we first calculate Pf,(-,8). Let @ = {# : |0 =
o(1)}. For each 6 = (s,t) in ©, Pf,(-,0) can be written as

[ [{le=s.v=0)| < vartp v)aedy = [ [{@.)] < Vo }plats, y+t)dedy.

Using polar coordinates, the change of variables give

. 3c
c—zﬂafl + %Wai(s +1)— c27ran(.s2 + t2)

Pf"(70) = an(',S,t) = CTQy — 9

+ 037ran(.s3 + t3) + o(ozn(.s3 + t?’)). (4.1)

Frome the equation (4.1) we can see that Pf,(-,6) is maximized at s =
t > 0. More precisely the differenciation of the righthand-side of (4.1) gives
that Pf,(-,6) achieves its maximum at 6, = (8p,t,) for which s, = t, =
(3e3/8¢z)an + o(ay). Since |6,] = O(ay,) = o(y/an), it is eventually true that

sup an(vo) S sup Pf"(’e)
|0—6n|>\/an 16]>~/an/2

Since the last quantity is maximized at (\/a,/2, \/am/2),

C

Pfu(,0.) — sup Pfu(-,0) > Zzﬂai eventually.

lo}> 352

Put €, = ¢;/87a,. Then (2.2) of Theorem 2.2 is satisfied when
> "3 (logn)/3, (4.2)
Therefore with probability one it is eventually true that

6, — 0,] < /.

Define g¢,(-,0) = f.(-,0) — fu(-,0,). Then for each n, G, = {g.(-,8) :

f € O} is also a VC subgraph class for an envelope G, = sup |gn|. For each
Gn
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R, define subclasses G,(R) = {gn(-,ﬁ) 20— 6,] < R}, and their envelopes,
Gn(R) = sup |gn]. For R < M,/ay, G,(R) is an indicator function of a set
R)

n

with volume O(R./&3,). So PG,(R)* < CR./a, for a finite constant C.

A

For rate of convergence of (8, — 6#,), we need to calculate the second
derivative matrix, —V,,, of Pg,(-,6) at 6 = 6,. A straightforward calculation
shows that V, is a diagonal matrix, (2c;7may, + o(an))! where I is a two by
two identity matrix. So 'V, goes to a negative definite matrix, V = 2com/.
By Theorem 2.5, |8, — 6,| has a n~'/3a;1/2 which is guaranteed to be much

smaller than /&, by (4.2).
Reparametrize 6 by setting 8 = 6,, + Ay, , where 7, = n=3a;1/2 Then

A

Ay = n1/3a}/2(én — 0,,) maximizes the rescaled process
Xn()‘) = 01;;1’}’;213971(', On + A'-)l'n) + G;IVJZ(Pn - P)gn(yan + A'-)/n)

Theorem 3.4 establishes the limit distribution of X,,. Since we have shown
(i) of Lemma 3.2, (ii) of Lemma 3.3 and the condition on the second deritive
matrix of Pgy(+,8), we only need to check (i) of Lemma 3.3 and (ii) of Lemma
3.2. We start with (i) of Lemma 3.3, because (ii) of Lemma 3.2 follows easily
afterwards.

For each A and M\,
fu(e3 00+ AYn)
with radius y/a;,. Using surface integration (see Example 6.2 of Kim and
Pollard(1990)), P|fu(:, 85 4+ Ayn) — fu(,0n + X'7)| can be expressed as

gn('a0n+)"Yn)_gn('agn'i"\/'yn) fn('70n+)‘7n)“

is an indicator function of a symmetric difference of two discs

4o/, nl/\ — )\/l + 0(\/ (647 n)7

which satisfies the condition (i) of Lemma 3.3. Since |g, (-, 0n+An) —gn(-, 0+
Ny )| = [gn(.’(‘)n + M) — gu(c, 00 + /\’7”)]2 and for real a, b, it is true that

ab= %[a® + b* — (a —b)*] and a;?y;*n"! /@y, = 1, the covariance kernel is

HOLXN) = 2¢(]A]+ [NV = A= X)),



268 JeanKyung Kim

which is a constant multiple of the covariance kernel of two-sided Brownian

Motion. So the process X,, converges in distribution to a process
X(\) = —em|\* + 24/coB,

where B is a two-sided Brownian Motion. Since conditions in Theorem 3.5 are
satisfied,

A

Ap = n1/3a71l/2(én——0n) ~» arg max X.

The optimal rate of , is determined as to minimize the mean square error,
Eéi, which is divided into two parts: variance, E(én —0,,)%; squared bias term,
f2. Since minimum is achieved when two terms have same order, an optimal
rate of a, should satisfy n=2/3a;;! ~ o2, which gives the optimal rate of a,, is
n~%. This also satisfies the condition on ay, in (4.2). So 0, converges to origin,

which is the true mode, at a rate of convergence, n=2/°. More precisely,

nsf, ~ argmax X + —(2(1,1).
862
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