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ABSTRACT

Count data are often overdispersed, and an appropriate test for the
existence of the overdispersion is necessary. In this paper we derive a
score test based on the extended quasi-likelihood and the pseudolikeli-
hood after adjusting to the Bartlett factor. Also, we compare it with
Levene(1960)’s F-type test suggested by Ganio and Schafer (1992).
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1. INTRODUCTION

Count data are usually analyzed by the generalized linear models (McCul-
lagh and Nelder 1989) such as the logistic regression model or the log-linear
regression model. However, by the presence of the overdispersion, variability is
often greater than what is predicted by a specified model. To incorporate the
overdispersion, Efron (1986) proposed the double exponential family, Nelder
and Pregibon (1987) suggested the extended quasi-likelihoods, and Carroll
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and Ruppert (1988) considered the pseudolikelihoods. Estimation of the dis-
persion parameter is done by Williams (1982) for extrabinomial variation, and
by Breslow (1984) for extra-Poisson variation. Asymptotic relative efficiencies
of various estimators are discussed by Firth (1987), Hill and Tsai (1988), and
Kim et al. (1992). Tests for the existence of the overdispersion are studied by
Cox (1983), Breslow (1990), and Ganio and Schafer (1992).

Ganio and Schafer (1992) recommended using the Levene (1960) type modi-
fications of score tests throughout simulation studies. This paper presents
another score test which is more powerful and governs the level well. The idea
is based on forcing the expectation of the score function as close as zero by
inserting the Bartlett adjustment factor. In Section 2, models that we will use
are described. Score test statistics are derived for these models in Section 3.
Simulations are done in Section 4, and concluding remarks are given in Section

3.

2. MODELS FOR DISPERSION

For comparisons and corrections we take the same models and notations as
in Ganio and Schafer (1992). Assume that Y},...,Y,, are independent response
variable with

E(Y;) = pi = h(n:), m=xiB , (1)
and

var(Y;) = éiV(p), ¢i=9(%), % =X+za (2)

where x; and B are p-vectors of known explanatory variables and unknown
parameters, A(-) is link function, V/(-) is variance function, ¢; is a dispersion
parameter, g(-) is a twice-differentiable positive function, A is a scalar pa-
rameter, and z; and a are g-vectors of explanatory variables and unknown
parameters. Our interest is to derive a score test statistic for H : a = 0. If
a = 0 then ¢; is a constant and (1) and (2) reduce to the generalized linear
model under H.

Hypotheses about a may be tested with likelihood methods such as dou-
ble exponential family which is equivalent to the extended quasi-likelihood
function. The log-likelihood is defined as
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L(p, &;y) = ——Z{logq& ¢1} (3)

where D; = D(y;,p;) is the i-th deviance. As noted by Ganio and Schafer
(1992), (3) is the log-likelihood function obtained by treating

sign(y: — pi)V/Di ~ N(0, ¢;).

As is well known, D; is a biased estimator of ¢;, and thus bias corrected form
is more accurate, i.e., we will use

sign(y; — p:)V/Di ~ N(0, ki) (4)

where k; = 1 + b;, and b; is a Bartlett adjustment factor. Analytic form of
b; for some distributions is given in McCullagh and Nelder (1989). Then, the
log-likelihood corresponding to (4) becomes

l;(”" Ay)=—z Z {log z‘bl [y } (5)

Using a method of moments Carroll and Ruppert (1982,1988) suggested
the pseudolikelihood defined as

L, ¢;y) -—Z{log¢ + 3 } (6)

where R; = R(yi, ;) = (y: — i:)*/V(j1;) is the Pearson chi-square. Again, (6)
is obtained by treating (y; — pi)/+/V{(p:) ~ N(0, ¢;), and we will modify (6)
based on the same idea as

R;
Ip(u, d3y) = ——Z{log kidi) + s } (7)
3. DERIVATION OF SCORE TESTS

We derive score tests for (5) donoted by SD*. Let 8 = (o,A,3’)" and
assume ¢ is identity. Let D; and D; be the first and second derivatives of
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D; with respect to p;. Let the score vector be Uy = (U;,U,\,Ué)' and the
information matrix be

I I Iaa l Ia)\ Iaﬁ
10) = |42 = | T [Tn Lis
121 I22 Iﬂ Iﬁ,\ Iﬁﬁ

Then the score test for H : a = 0 is given by
DS* = U (i,,)710,

where U is U, evaluated at the maximum likelihood estimate of @ under H,
and 11 2 = Iy — 1,157 T3, also evaluated at the maximum likelihood estimate
of 6 under H. Now, we need to compute U, and I,.,.

_oG _oly 9¢; 1 1 D}
Ua_aa_aqb; aa— 22{¢, k,‘ ?}Z1

_ [02;] 1 -
loo = —F _Ba"’] =3 > 22!/ 4
_ _gp|9% E 2
lox = —E 5202 zi/ 9.
) 1
Ly =—-E (m:} =521/

Also, it can be easily shown that I,5 and g are approximately zero because
E(D;) is approximately zero. Therefore,

-1
I I L.
Lz = log—(Iaa Iaﬁ)( M *") ( A )

Iox Ipgp L4

= L= o) Igﬁ)q(%;:)

= cha - IaAI)T,\lL\a

= }[Tazl/¢? - T2/ BHS /8 T 67
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Under H, ¢; is a constant, say ¢, and let D; = D; :(¥i, fi:) be the i-th deviance
statistic and =1 DY D; /k where k; = 1 + b;. Then,

~

1 D;

3 , ’ 1 ’ - 3 t
{562} (Saet- L5awa} {20 2a o

26 k; n :
Note that the score test statistic by Ganio and Schafer (1992) based on (3) is
§ = 573 S(Di— DYa(Y ) (s ~ D (9)

where D = %ZDi. In deriving DS in (9), they used §_z; = 0, however, this
condition is inconsistent with their simulation structure which will be stated
in Section 4. Note that if k; = 1 then (8) and (9) are equivalent except the
correction term Y. z; Y. z!/n.

Similarly, we can derive the score test based on (7) as

DS* =

PS" = 2;2 {z@ -g—) }'{Zzizz—%Ezizzz}_l{Z(qB——R—*)zi} (10)

where R; = R(y;, i) and ¢ = L T Ri/k:.

4. SIMULATIONS

We follow the same simulation structure as in Ganio and Schafer (1992)
for comparisons. Observations were generated according to the logit model,
logit(pi;) = Bo + fizij, with zj =ifori=1,...,5and j =1,...,8. z;; =1
for 7 even and 0 for j odd, and with the following conditions ;

A. m and fB’s

(a) m =16 ; Bo = —4, /1 = 1 (small sample size ; moderate p)
(b) m =16 ; By = —4, 41 = .6 (small sample size ; small p)
(c) m =64 ; By = —4, 8, = 1 (large sample size ; moderate p)
(d) m =64 ; B = —4, /i = .6 (large sample size ; small p)
B. distribution of Y
1. Y ~ B(m,p)
2. Y|p ~ B(m,p), p~ Beta with mean p and variance p(1 — p)/16
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3. Y|p~ B(m,5), logit(5) ~ N(logitp,1/2)

4. Y|p ~ B(m,p), p ~ Beta with mean p and variance p(1 — p)z/16

5. Y|p~ B(m,5), logit(5) ~ N(logitp,z/2)

The test statistics used in this simulation are

DS : score test under (3)

PS : score test under (6)

DSF : Levene test under (3)

PSF : Levene test under (6)

DS* : score test under (5)

PS* : score test under (7).
2000 replications are done for each set of conditions with nominal 5% level.
Distributions 1, 2, and 3 are for the performance of level control (Figure 1), and
4 and 5 are for power (Figure 2). We obtain almost the same results for DS,
PS, DSF, and PSF as in Ganio and Schafer (1992). They recommended using
DSF or PSF to DS or PS because DS is quite conservative and PS is too
liberal. In our simulation, PS* is also liberal, while DS* is quite satisfactory
in most cases. For the performance of power, DS* is slightly better than DS
in all cases. Also, DS* is better than DSF or PSF except when both the
sample size and p are small (Figure 2(b)). Theoretically DS* should be much
better than DS in the level control and power. However, the improvement of
DS* over DS is not appreciable. We believe that this phenomenon stems from
the poor adjustment of the Bartlett factor. The performance of the Bartlett
factor was investigated by Kim and Jeong (1992) throughout the simulation
study. Therefore, the refinement of the Bartlett factor such as second order
expansion is necessary to improve DS* up to the theoretical level.

5. CONCLUDING REMARKS

Count data are often overdispersed, and an appropriate test for the exis-
tence of the overdispersion is necessary. In this paper we derived a score test
based on the extended quasi-likelihood and the pseudolikelihood after adjust-
ing to the Bartlett factor. Also, we compared them with other tests via the
level control and power through the simulation study. In most cases, the ad-
justed score test was best. We can improve the adjusted score test by refining
the Bartlett factor which will be a future research area.
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Figure 1. Simulation results. Type I error rates for nominal 5% tests based
on 2000 simulated samples of size n = 40.
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Figure 2. Simulation results. Power of 5% level tests under two nonnull
conditions, based on 2000 simulated samples.
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