187

Journal of the Korean
Statistical Society
Vol. 23, No. 1, 1994

A Sharp Cramer-Rao type Lower-Bound for
Median-Unbiased Estimators

1

Beong-Soo So

ABSTRACT

We derive a new Cramer-Rao type lower bound for the reciprocal
of the density height of the median-unbiased estimators which improves
most of the previous lower bounds and is attainable under much weaker
conditions. We also identify useful necessary and sufficient condition for
the attainability of the lower bound which is considerably weaker than
those for the mean-unbiased estimators. It is shown that these lower
bounds are attained not only for the family of continuous distributions
with monotone likelihood ratio (MLR) property but also for the location
and scale families with strong unimodal property.

KEYWORDS : Median-unbiased estimator, Cramer-Rao lower bound,
Monotone likelihood ratio, Strongly unimodal family

1. INTRODUCTION

Let  be a Lebesque measure on the Euclidean space R™ . Let P = {Py;0 €
O}be the family of distributions on R™ which are absolutely continuous with
respect to p and depend upon a single parameter 6 where the parameter space
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O is an open interval on the real line. We assume that for every 0 € © f(z;0)
is a density function of Py with respect to u where z = (z1,--,2,) € R™. Let
X = (Xy,---,X,) be a random vector having a joint density function f(z;#0).
Let g(0) be a real valued differentiable function on ©.

We define an estimator §(X) of g(8) is median-unbiased if

[1jmediang(8(X)) = g(8) for all 6 € O. (1.1)

For any estimator having absolutely continuous distribution condition (1.1) is
equivalent to

Py[8(X) < g(6)] = P[6(X) > g(8)] =1/2 forall 6 ¢ O. (1.2)

Let 6(X) be any median-unbiased estimator of ¢(§) and let fs(y;0) be the
density function of the random variable §(X ) with respect to the Lebesque
measure in R.

In this framework several versions of the analogue of the Cramer-Rao lower
bound for median-unbiased estimators were proposed in the literature. In
a pioneering work in this direction, Alamo (1964) introduced the quantity
fs(9(0); 0) as a natural measure of concentration of the median-unbiased es-
timator §(X) around the estimand g(6) and proposed its reciprocal quantity
1/fs(9(0);8) as a new measure of the dispersion of the estimator. Then he
obtained the following lower bound for median-unbiased estimator:

[2f5(9(0);0)]7" = 14'(6)1/ L2(8)"/* (1.3)

where I5(6) is the usual Fisher information number

L,(9) = E[(8/09) log f(X;6) .

Here we note that the quantity [2f5(g(8);0)]~" can be interpreted as a reason-
able measure of the dispersion of the estimator §(X) around the estimand
g(8) corresponding to the concentration measure f5(9(6);0). See Sung and
et al (1990) for more detailed interpretation of quantity [2f5(g(6);0)]7! as a
measure of diffusivity of the estimator. Recently a sharper lower bound for
the left hand side of the above inequality (1.3) was proposed by several au-
thors including Stangenhaus (1977), Stangenhaus and David (1978) and Sung,
Stangenhaus and David (1990) respectively under slightly different regularity
conditions. Essentially they obtained
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(2f5(9(0); )17 2 14'(6)1/ L, (6) (1.4)

where I;(0) is an analogue of Fisher information

5,(9) = Es| (9/06) log f(X;0)|.

Sung, Stangenhaus and David (1990) also identified bound-achieving median-
unbiased estimates for some special type of strongly unimodal location and
scale families.

On the other hand Lehmann(1986) and Pfanzagl(1970) obtained strong
optimality results for the best median-unbiased estimators with respect to
arbitrary monotone loss function when the family of densities f(z;8) has a
monotone likelihood ratio (MLR) property .

In view of these results it is clear that the lower bound (1.4) is not the
best possible bound because lower bound in (1.4) is not attainable in the most
of the monotone likelihood families except for the normal location family and
this clearly contradicts the general optimality results of Lehmann(1986) and
Pfanzagl(1970).

In this paper we will derive a sharper lower bound for the reciprocal quan-
tity of the density height [2f5(g(6);8)]™! of the median unbiased estimator
6(X) which improves the previous lower bound (1.4) and is attainable for the
much wider families of density functions including arbitrary monotone likeli-
hood ratio family and general strongly unimodal location family as important
special cases. Under suitable regularity conditions, we will obtain the following
lower bound :

[2f5(9(0); )17 2 14'() |/ I3(6) (1.5)

where I7(6) is the centered analogue of the L,-Fisher information

I;(6) = Ey|(8/06) log f(X;6) — k|

and

k = mediang [(0/00) log f(X;6)].

Note that the lower bound (1.5) is always strictly greater than the previous
bound (1.4) unless the constant k happens to be identically zero. We will also
identify the exact necesssary and sufficient condition for the attainability of
the lower bound (1.5) which is much weaker than that of the mean-unbiased
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estimators and also weaker than that of the previous result (1.4) for median-
unbiased estimators. Then we show that these conditions are satisfied not
only for the general family of density functions having monotone likelihood
ratio property including the exponential class as an important special cases
but also for the general location and scale families with strongly unimodal
property including censored survival data as special cases.

2. LOWER BOUNDS

Our method of construction of the lower bound closely parallel the similar
derivation of the analogue of the Chapman-Robbins inequality which is free of
regularity conditions as is given by Sung et al. (1990) but differs fundamentally
from all the previous derivations in using important centering argument which
has never been considered before in this context. Let A be a real number such
that both 6 and 6 + A belong to ©. By the definition of median-unbiased
estimator, we have the following identities :

Ey [sgn(8(X) — g(8))] = 0. (2.1)

Egia[sgn(6(X) —g(0+A))] =0. (2:2)
Subtracting (2.1) from (2.2) , we get

J (304 8) = £(z;0)Jsgn[ 6(X) — 9(6 + A) ] du
+Eo {sgn[6(X) = g(0 + A)] - sgn[6(X) ~g(6)]} =0.  (2.3)

Multiplying (2.2) by kA and subtracting it from (2.3), we have the following
identity :

2[Fs(9(6+ A); 0) — Fs(g(6); 0)]
= [Uf(530+2) = f(2:0) ~ k- Af(a; 6+ A)]
sgn[b6(X) — g(0 + A)]du (2.4)
where Fj(+; ) is the distribution function of §(X) under the distribution f(z; 6)
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Following lemma summarizes above result in a form which will be more
convenient for the derivation of lower bound.

Lemma 1. Let g() be a real valued function on ©. Let §(X) be a median-
unbiased estimator of g(#) having absolutely continuous distribution function.
Then for arbitrary constant k we have the following identity :

2[Fs(g(60+ A); 0) — Fs(g(0);9)]
= [ 1f(2:6+8) = f(2:0) ~ kAf (20 + A)lsy - s2dp (2.5)

where s, = sgn[f(z;0 + A) — f(2;0) — kAf(z;0 + A)] and s, = sgn[6(X) —
g(6 + A)].

Proof. It follows Immediately from (2.4) .

Remark 1. Introduction of the extra centering parameter k in (2.5) is the
key difference between our approach and most of previous derivations which
do not consider this possibility. This additional degree of freedom achieved
by the introduction of the extra parameter k¥ will be exploited crucially in the
derivation of the sharper lower bound .

Now we are ready to present an analogue of Chapman-Robbins type in-
equality for the median-unbiased estimators.

Theorem 1. Let g(6) be a real-valued differentiable function on ® C R.
Let 6(X) be a median-unbiased estimator of g(#) having a density function
fs(+; 8) which is continuous at g(#). Then we have :

[2£5(9(6); )17 > |g'(0))/inflimint [ |{ f(z:0+A) ~ f(:6) )/
A —kf(z;0+ A)|du. (2.6)

Proof. Dividing (2.5) by A and taking limits as A — 0 for fixed k¥ and
noting |s; - 82| < 1, we get the result.

Remark 2. Actually we can replace the continuity of the density f5(-;6)
at the point g(f) by the existence of the left and right limits of the fs(-;6)
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at the point and can get the corresponding one-sided version of the inequality
without difficulty.

Remark 3. The density of the uniform distribution

f(z; 0) = 1[0—1/2,0+1/2]($)
and the density of the double exponential distribution

Sz : 8) = 1/2exp(—|z — 0])
are two examples of the non-regular type of distributions for which we can
apply the inequality (2.6).

In order to obtain an analogue of Cramer-Rao type inequality for the
median-unbiased estimators we now introduce the following regularity con-
ditions on the density f(z;9) :

A: (L' - differentiability ) There exists a function f’(z;0) such that
J1f'(2;6)|dp < oo and

/ |f(z;0 + A) — f(z;0) — f'(z;0)Aldu = 0o(A) as A — 0. (2.7)

Remark 4. A simple sufficient condition for (2.7) is
A, : For every z , 0f(x;0)/00 exists and is continuous function of # in ©.
Az : For fixed 6y, there exists a neighborhood N(f,) of 6, and non-negative
function G(z) such that

sup | (9/90)f(;0)| < G(z) for all =

0eN

and [ G(z)dy < oo.

Under the regularity condition A , we have the following analogue of the
Cramer-Rao type inequality for the median-unbiased estimators.

Theorem 2. Let g(6) be a real-valued differentiable function on ©. Let
6(X) be a median-unbiased of g(#) having a density function fs(-;8) which is
continuous at g(#). Then under the regularity condition A , we have :
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[2£5(9(8); 6)]7" > 1g'(6)] / 17 (6) (2.8)
where I7(0) = infy [ |f'(z;0) — kf(z; 0)|dp .
Moreover if the support of the f(z;0) does not depend on 8 , we can write

I¥(9) in the form

I(6) = inf Ep| f(X;0)/f(X;6) — k|
= Eo| f(X;0)/£(X;0) — k(0)| (2.9)
where k(0) = mediang[f'(X;8)/f(X;0)] .

Proof. By the regularity condition A , the denominator of the right hand
side of (2.6) has the limit which is the same as the denominator of the (2.8)
for fixed k.

Remark 5. Most of previous lower bounds for the median-unbiased esti-
mators ignored the possibility of improving the lower bound by centering the
score function by its median instead of centering by mean which is identically
zero. This is responsible for the limited applicability of most of previous lower
bound in the non-symmetric family of density functions.

3. OPTIMALITY CONDITION

In this section we will identify the necessary and sufficient condition for
the attainability of the lower bound (2.8) and then show that this bound is
attained in two most important families of density functions which include the
continuous exponential family and the strongly unimodal location family.

First suppose that the regularity condition A is satisfied by the family of
density functions {f(z;8),0 € ©}. Then we define a median-unbaised estima-
tor 6(X) of g(f) to be optimal if

[2£5(9(6); 0)]7" = |g'(0)I/ 1(8)  for all 6.

As a first step for finding the optimal median-unbiasd estimator, we first char-
acterize the necessary and sufficient condition for the attainability of the bound
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(2.8).

Theorem 3. Let the conditions of the theorem 2 be satisfied by the family
of density functions {f(z;6),0 € ©} . Then the following identity holds :

2/5(9(0);0)|g'0) | = [ 1£(2;0) — kf2:6) 31 52 55 dp

where s, = sgn[f'(z;0) — kf(z;0)] , s2 = sgn[8(X) — g(8)] and s3 = sgn[g'(9)).
Moreover a median-unbiased estimator §(X) is optimal if and only if for
some k the identity

sgn | ['(w:0) — kf(z;0)] = sgn [6(X)—g(8) | sgn[(6)] holds a.e. u* (3.1)
where dy*/dp = |f'(2;0) — kf(z; ).
Proof. Applying L'- differentiability to (2.5), we get immediately :

2 fs(9(6); 0)'(0) = [1/(256) = k7 (; 0}, d. (3.2

Then using the identity = |z|sgn(z) , we can write (3.2) as

2f5(g(0;0) lg'(a)l = / lf’(:v;a) — kf(z;0) 515283 dp = /31 Sy s3du”.

This completes the proof because s;s,53 = 1 holds if and only if S = 8283 a.e.
with respect to u*.

Remark 6. If f(z;60) has the common support, then the optimality con-
dition (3.1) is equivalent to the condition :

sgnl f'(2;0)/ f(z;0) — k] = sgn[8(X) — g(0)]sgn[g’(0)] holds a.e. u* (3.3)
and k is a median of the score function f'(z;8)/f(x;0). If f'(z;0)/ f(a; ) has

no atom at its median k(), then u* and p are equivalent measures and a.e. Ty
can be replaced by a.e. u in (3.3).

In general it is not trivial to find a family of density functions which satisfies
the optimality condition (3.1) for some median-unbiased estimator. But we
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show that these optimality conditions are satisfied in the two important classes
of density functions f(z;#) which include the ezponential class and the strongly
unimodal location family respectively.

4. EXAMPLES

We first prove that optimality condition holds for the family of density
functions with monotone likelihood ratio property.

Theorem 4. Let the family of density functions {f(z;8),0 € ©} satisfy
the monotone likelihood ratio property in T(X) and let T(X) have the den-
sity function having strictly increasing continuous score function. Assume also
that the distribution function Fy(t) of 7(X) is a continuous function of  for
fixed t . Let the regularity conditions Ay and Az be satisfied by f(z;8). Then
there exists an optimal median-unbiased estimator of 6.

Proof. Monotone likelihood ratio property implies that the score function
of X is the same as that of T(X) which is assumed to be strictly increasing
function of T(X) . By the same argument as in the Corollary 3 in p91 of
Lehmann (1986), m(0) = mediang[T(X)] is an strictly increasing function of
6. If we define 6(X) = m™(T(X)) , then §(X) is an optimal median-unbiased
estimator of # which satisfies the optimality condition .

Remark 7. The most important family of densities f(z;6) which has
the monotone likelihood ratio property is the exponential class of continuous
densities of the form :

f(z; 6) = exp[26 — b(6)] h(z)

for some functions b(-) and h(z) . As a specific example which demonstrates
the difference between our result and previous bound (1.4), we consider the
problem of estimating the mean # of the exponential distribution f(z;0) =
0~texp(—z/6) , £ >0, 6 > 0 from the random sample X, .-, X, of size
n. Then we can easily show that the estimator §(X) = Y%, X,/C, is an opti-
mal median-unbiased estimator of § which attains the bound (1.5) but not the
previous bound (1.4) which is strictly less than the best possible bound (1.5).
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Here C,, denotes the median of the gamma distribution with shape parameter
n and scale parameter 1. Following table provides typical Monte Carlo simula-

tion results for the comparison of several information bounds for some values
of n with 4 = 1.

n Cn 2f5(6;0) 1;(6) NL(6) /5L(9)
1 .693 .69 .69 ) 1.00
2 1.68 1.05 1.05 1.09 1.41
3 2.67 1.32 132 1.34 1.73
10 9.67 2.49 249 252 3.16

Note that the median-unbiased estimator 6(X) does not attain the infor-
mation bound I;(#) but attains the new information bound I;(8).

Next we consider the location family of density functions f(z — @) and
provide sufficient conditions for the existence of optimal median-unbiased es-
timator of 6.

Theorem 5. Let the random vector X = (Xj,---, X,,) have density func-
tion of the form f(z — 8) where 8 = (8,---,8) € R"™ and logf(z — 8) is strictly
concave function of § € R. Assume also that the regularity conditions A4
and A are satisfied. Then there exists an optimal median-unbiased estimator

8(X) of 6.

Proof. Let k be the median of the score function which is independent of
6. Let 6(X) be the unique solution of the equation

d/80 [log f(z —0)] = k.

Then the monotonicity of the score function implies that §( X') > 6 if and only
if 8/00[logf(xz — 8)] > k. Therefore §(X) is an optimal median-unbiased esti-
mator of by (3.4).

Remark 8. Let X = (Xj,:--, X,) be a random sample from a symmetric
strongly unimodal density f(z — 8),0 € R. Then optimal median-unbiased
estimator 6(X) of @ is the unique mazimum likelihood estimator (MLE) as is
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first noted by Stangenhaus and David (1978). But we note that our results
provide complete answers to the asymmetric distrbutions as well as the sym-
metric distributions as long as they are strongly unimodal.

Remark 9. As an important special case of above result, we can mention
the application of above result to the problem of analysis of the type II cen-
sored data with strong unimodal density f(z — 0) .

Remark 10. By the useful invariance property of the optimal median-
unbiased estimator, above result can be easily applied to the scale family of
densities of the form :

f(z; 0)= f(z:1/0,---,2,/60)/6", 6>0
if it can be transformed to the location family with strongly unimodal density
function by the log transformation.
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