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Simultaneous Estimation of Parameters
from Power Series Distributions
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ABSTRACT

Let Xi,...,X, be p independent random variables, where each X;
has a distribution belonging to one parameter discrete power series dis-
tibution. The problem is to simultaneously estimate the unknown pa-
rameters under an asymmetric loss. Several new classes of dominating
estimators are obtained by solving certain difference inequality.
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1. INTRODUCTION

This paper is devoted to simultaneous estimation of the parameters of
several independent discrete power series distribution under an asymmetric
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loss. Suppose that Xj,..., X, are p independent random variables, X; having
probability mass function which is defined

i 0,’ t,‘ xr; 9:5' lf:L', ——-0,1,...
pe.(zi) = Pr(X; = z;) = { g( Jtile:) elsewhere,

(1.1)
and let X = (Xy,...,X,).

Such distribution is called the discrete power series distribution which was
first introduced by Noack(1950). Special cases include the Poisson and the
negative binomial distributions. Under the normalized squared error loss, Kar-
lin(1958) and Brown and Hwang(1982) showed the admissibility of the usual
(MLE, UMVUE) estimator X of # for p = 1. In the simultaneous estimation of
means from p independent Poisson distributions, Peng(1975), Clevenson and
Zidek(1975) and Tsui and Press(1982) all found estimators improving upon
MVUE under various normalized squared error loss functions when the criti-
cal dimension for p is 2 or 3. Indeed, Hwang(1982) and Ghosh, Hwang, and
Tsui(1983) considered a bigger class and obtained improved estimators under
normalized squared error loss for discrete power series families whose distri-
butions are given in (1.1). We note that all of these normalized squared error
loss functions are symmetric. However, often in some practical problems, the
use of symmetric loss is not appropriate. In this paper we will consider the

simultaneous estimation of § = (6,,...,6,) under an asymmetric loss defined
by _
2 &G
L(6,8) = cibi(-- — In= — 1), (1.2)
= 0 0
where ¢; > 1,0 =1,...,p, 6§ = (6y,...,6,) is an estimator of 8, and In denotes

the natural logarithm.

The loss(1.2) is a weighted version of the loss, so called Stein’s loss, which
was first introduced in James and Stein(1961) for estimation of the multinomial
covariance matrix. Dey and Chung(1991) investigated the multiparameter
estimation from the truncated power series distribution under Stein’s loss.
As indicated in Ghosh and Yang (1988), the loss(1.2) comes from the well
known entropy distance (or Kullback-Leibler information number) between two
distributions of p independent Poisson variables, which is defined as follows:

14 . .
L(8,6) = 20;(% - ln-g‘T —-1). (1.3)
i=1 t :
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In general, the loss(1.3) is not applicable in the Poisson case with unequal
sample sizes. Suppose that Xj is the total number of failures of the component
¢ in n; time periods with failure rate 6;. Then Xi,...,X, are independent
Poisson with mean n;0;. So, we wish to estimate 0; and not A; = n;0;. Then
X = %L is the unbiased estimate with variance ?{'-' Therefore the loss(1.2) is
reasonable. The asymmetric loss given in (1.2) often arise in practice when the
overestimation and underestimation are penalized differently. The application
of the asymmetric loss for the Poisson mean estimation problem is useful in
software reliability assessment. This is since the number of errors in a computer
program will usually follow a Poisson distribution and underestimation of the
mean number of errors will involve a large amount of penalty to the client.

By Roy and Mitra(1957), the minimum variance unbiased (also best mul-
tiple) estimator of 8 is given by §°(X) = (82(X),...,82(X)) , where

»%p

ti(Xi—1 . -
5?(X)={ Otl,(X'_) if X;=0,1,... (1.4)

elsewhere,

and ¢;(X;) is defined as zero if X; < 0,i=1,...,p

Since In0 is not defined, we consider the estimator (a corrected version)
8(X) = 6°(X) + b, where b = (b1,...,by),b; > 0,i =1,...,p. Such a correc-
tion to the unbiased estimator or the maximum likelihood estimator is quite
common for the binomial and the Poisson distributions when one observes zero
counts. Using asymptotic considerations, Anscombe(1956) derived such a cor-
rection. From Ghosh and Yang(1988), it follows that 6°(X) is a generalized
Bayes rule. Thus, for estimating 8, it is natural to obtain estimators improved
upon &°(X) and hence we propose §(X) = §°(X) + ¢(X) as an alternative to
8°(X), where ¢(X) = (¢,(X),.. o ¢p(X)).

In section 2, a difference inequality involving the risk difference between
the improved estimators and the unbiased estimator is obtained and solved.
In section 3, two different classes of improved estimators are proposed, which
are a class of shrinkage estimators and a class of their trimmed versions for
the Poisson case. In section 4, risk simulation results in Poisson distribution
are presented.
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2. OBTANING THE DIFFERENCE INEQUALITY

Let # = (zy,...,z,) be a vector of observations of the random vector

= (X1,...,X,), where X;, i = 1,...,p, are mutually independent random
variables with probability function pe,(;) as given in (1.1). Then for any real
valued function ®;(z) such that Ep|®;(X)| is finite and ®;(z) = 0 for z < —1,
the following identity holds;

Ep[0:9:(X)] = Ep[®i(X — )& (X)), (2.1)

where 62(X) is given by (1.4) and e; is the p row vector whose ith coordinate
is 1 and the other coordinates are 0. For a proof, see Hwang(1982).
The following theorem gives an unbiased estimator of the risk difference.

be an estimator of §, where

..»P , 8°(X) given by (1.4)
tisfying Ej|é:(X)| < oo and
(6°,0) be the risk difference.

) s

(X)) = (X)) +bb = (by,...,b,), b >
and §(X) = ($1(X), ., (X)) with ¢,
¢i(z) = 0 for ¢ < —1. Let A(8) = R(S,
Then under the loss (1.2),

Theorem 2.1. Let §(X) = 6(X) + ¢(X)
0,: =1,.

(z) sa

6) - R

A(6) < E[A(X)],

where
P

AX) = 3" {82 (X)u(X) — 62(X)inL + (X — e))I[62(X) > a]}  (2.2)

=1
with :(X) = 4i(X)/8}(X). Here a denotes a suitable positive integer for
defining In[l 4 ¥;(X — ;)] > 0 and I(A) denotes the usual indicator function
of the set A.

Proof. It follows from (2.1) that
A(6) = R(6,0) — R(6%,0)

- i}c,-E [¢,~(X)—0,-lﬁ( ?”g;)

< Yer{a0-g00n0+ 55 N0 > a)
< 3 aB (X)) - F00R + (X - )IE(X) > o}
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Now we need the following lemma to prove the main results. The proof is
given in Dey and Srinivasan (1985).

Lemma 2.1. For |z| < u < 1,

3—u

6(1—u)"

In(l+z)>z— (2.3)

Thus, in order to get estimators improved upon 84(X), it is sufficient to
find the solution of the difference inequality A(X) < 0, with strict inequality
for some set of X with positive measure. The following section gives some
improved estimators.

3. CLASSES OF IMPROVED ESTIMATORS

In this section we will propose three different classes of improved estimators
which are all of shrinkage types. The following theorem gives a class of shrink-
age estimators based on all the observations.

Theorem 3.1. Suppose that §(X) = 6*(X) + #(X), where for d > 0 and
¢ 21, #(X) is given componentwise as

COORX) . _
¢ 5= [63(X) + d]’

(X)) =— 1,...,p. (3.1)

Assume that the following conditions hold for some positive integer a :
1) C(X) is nondecreasing in each coordinate.
2) (X —e) —82X)> —a, i=1,...,p.
3) b =K >aand pd > a.
1) 0 < O(X) < FZEr = G(say).
Then 6(X') dominates 6*(X) in terms of risk.

Proof. First defining T' = T°F_, 6?(X) and using our assumptions, it follows

that
(X — &)

C(X — e,')
l(S,b(X - e,~)

ci[Z521 (83(X) + d) + (X — &) — (X))

(3.2)
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Thus, defining I(A) as the usual indicator function of the set A, it follows from
(3.2) that

I?;EX_ ;I [62(X) > a] < (Cj'"(f—d ) )I[6O(X)>a]<—%c—i<§l<1'
(3.3)
Next using (3.3) and Lemma 2.1, it follows immediately that
In [1 + %(——:e—;] 1[6°(X) > a (3.4)
(X —e) 3-Gpd)! (X —e) |0
> =) "B X —ep) ) 2
C(X —e) 1 C*(X — &) 0
—>— {_c;(T+pd—a)_§pd(pd_G) 2(T+pd ) }1[6( )>a]'

Using the fact that C(X) is nondecreasing in each coordinate it follows from
(2.2) and (3.4) that

AX) = ZPI ci[4i(X) = 8(X)In(1 + %—%)1[5{?(){) > d]] (3.5)
s C(i()(«sz"&) SN
% pdp_c_l 5 C:((:,{( ;pe;)f?gi)} 1T > ]
< [- C();)fp; K) Ti(;il)z’ : 2(1)5{ - (Tﬁff)@z] Tsq
S g i) T S pa— a7 >
i ;(T ¥ pd)(/gg(rxji,(lpf j);’zpd —l¢ ~ CXNIT 2 o]

This completes the proof of the theorem.



Younshik Chung and Dipak K. Dey

Remark 3.1. Note that in Theorem 3.1, we have the condition that
(X — ;) — 62(X) is bounded below by some fixed negative number, say —a,
where a > 0. It can be easily checked that both Poisson and negative binomial
distributions satisfy such a condition.

Next, we consider the two important special cases, which are the Poisson

and the negative binomial distributions.

Example 3.1. Let X,;’s be independently distributed with probability
mass function

o7
pe,(z;) = exp(—O;)F, z; =0,1,.... (3.6)
It follows that the minimum variance unbiased estimator of 8; is
ti(z; —1
H(z) = tilzi = 1) =z, z;=0,1,....
t,-(.’l),')
Since 8?(z — ¢;) — 82(z) = —1, the Poisson distribution satisfies the condition

2) of Theorem 3.1 and so under the loss (1.2) with all ¢; = 1, for all ; > 0 and

YP 16 >1,8(X) = X + b is dominated by
C(X)

E?:l(X‘i + d)

Thus Ghosh and Yang’s(1988) estimator is one of our improved estimators
with suitable choice of a (that is, a = 1).

5(X) = (1- )(X + ).

Example 3.2. Let X;’s be independently distributed with probability
mass function

po,(z;) = (—1—:—:’—%'—;1_—1—;—)—(0 (1 —6,)",z; =0,1,...

andr; > 2,2 =1,...,p.

The best unbiased estimator in this case is given componentwise as 6?(z) =
s72—. Since §(z — &) — &§(z) > —(r; —1),a = r; — 1 > 1. Therefore for all
b; > 0 and Y7_, b; > a,8%(z) is dominated by an estimator in Theorem 3.1.

Now it is clear from (3.1) that if §2(X) is large, the estimator §(X) col-
lapses back to 8°(X). Thus in the presence of observations, we should look
for trimmed versions of the improved estimators. In view of that, we ob-

tain another set of solutions to this difference inequality (2.2) which lead to
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a similar-trimmed version of the estimators obtained earlier. Related results
on trimmed estimators under weighted squared error loss are given in Ghosh
and Dey (1984). We will restrict the trimmed estimators only to Poisson dis-
tributions. First of all, We need to develop a few notations before starting the
results concerning trimmed estimators for the Poisson case. Let us define

8(z) z;
h.-(:c,-) = Z k_1(= Zk—l).
k=1 k=1

Suppose that T STy <...<zp <... < Z(p) are the ordered z;’s, where
z(;) is the Ith ordered statistic. Define

di(x;) = Ahi(z:)hi(zi + 1) + do
where A = max({z;}/_;,1) and dy > 0 is a constant. Let

D =D(X)= ;dj(Xj) + ;d,-(x(,))
D; = Di(X) =3 di(X;)+ > di(Xp) + di(Xi + 1)

Dy = Dy(X) = st d;(X;) + ;dj(Xu)) +di( X))

where 37;,5,,53 and 3, denote the summations over {U:X; <X}, {U:
Xi>Xph i#0:X;<Xp}and {#i: X; > X} respectively.

Also define ¢* = max(q,0). Now, the following theorem gives new class
of trimmed shrinkage estimator which takes only I smallest observations and
largest observation among the p observations if p > 3 and I > 3.

Theorem 3.2. Suppose that §0(X) = 8(X)(1 + ®(X)) where ®(X) is
given componentwise as
—aC!X!h,’!X.'! Xi <X(l)

®,(X) = { —aC(‘}?f;.‘(Xm) X > Xy
C.’D([) = *

(3.7)

~ Assume that the following conditions hold: -
No0<a<¢ min(;%;, E%1__—1‘"1),6 =min(¢;),/ >3 and 0 < u < 1.
2) C(X) is nondecreasing in each coordinate.

3)0<C(X)<i-2.
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Then for p > 3, §!)(X) will dominate 6°(X) in terms of risk.

Proof. First consider [®;(X —¢;)|. If X; > X, then X; -1 > X@- So,
aC(X - e,')h,'(X(I))l S IaC(X)l S u<l.

C,-D(l) C;
Similarly, if X; < X;), then |®;(X — ¢;)] < u < 1. Using Lemma 2.1, since
u < 1, it follows from (2.2) that

AX) < 3 alfX)B(X) - 0:(X = e)) + KOX)DHX — )]

i=1

+ Yl - £001(X)

[D:(X —e)| =]

where k = T:;_—HT)‘ Since 82(X) — 62(X) = b; > 0, it is sufficient to show that

> alfX){B(X) - B(X — e} + BR(XBHX —e)] <0, (38)

Consider the second term on the left hand side of (3.8). If X; < X, then
GXORX;) < 8(X)hi(X)hi(X; +1)
S Aki(X5)hi(X; + 1) < di(X;).

Similarily 62(X)h3(X()) < di(Xq) if X; > Xy ,since A > 1. Thus,

d;
2 B(X)RNXS) + > (X)X @) < D.

Therefore, it follows that
S (X)AH(X;) + o 82(X)RH( X))
D2

Ld ka? Y1
S ekb(XP(X -e) < Dorn)
ka"-C?(X)

cD -
Next, consider 1°F_; ¢;62(X)[®;(X) — (X ~ ¢)]. If X; > Xy, then ®,(X) —
®;(X —e;) = 0. Suppose that X; < X()- Then, it can be shown that

< (3.9)

Gl@:i(X) — ®:(X —¢)] < aC(X)’“(X‘)(D" - D) - IIJ).-gz.;(X.-) — k(X — 1))
' (3.10)
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Finally, using the definition of h;(X;) and D;’s, it follows that

};“lc.-é?w)[@,-()c) - B(X —e)] = T (0B(X) - 84X - e
iy i (X:) 1
< TacxREg I -
2d,(X) 1
< Tac)p5l - 5l
S —aC(X)(NI(Xg_z)"F
< €N (3.11)

where Ni(X) = #{j : X; < Xy}.
Combining (3.9) and (3.11), we have

S fX)B(X) — Bi(X — e5) + kOXX — &)

=1

O, (FOR),
aC*(X) k
== E -

aC

IAIA

0.

This completes the proof of the theorem.

Next, the following theorem gives another class of trimmed shrinkage esti-
mators which takes only p—1I+1 largest observations among the p observations
. Let us define

S=5X Z d; (X + Z d;(X (1)

S.-=S,-(X)=Zd +Zd (X)) + di(Xi + 1)
Sw = Sw(X) = Zd +Zd (X@y) + di( X ()

Note that N(X) = #{i: X; > X(l)} is nondecreasing function in each coordi-
nate.
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Theorem 3.3. Suppose that 6*(X) = 6*(X)(1 + ®(X)) where ®(X) is

given componentwise as

=a(N(X)=2)*h(X)) X; > X(l)

¢ S;
0i(X) ={ SN -t (Xw)  y <
c.'S(,) P = U

(3.12)

where 0 < a < c’min(p_fl‘_rﬂ;f?“l),c' = min{c¢} with 0 < u < 1 and
1 <1< p—2. Then for p > 3, 6*(X) will dominates §°(X) in terms of

risk.

Proof. The proof is omitted because of its similarity to the proof of the
Theorem 3.2.

4. RISK SIMULATION STUDY

In this section we will compute the risk of the shrinkage and the corre-
sponding trimmed estimators for the simultaneous estimation of the Poisson
means under the loss(1.2) with different values of ¢;. First, the number p of
independent Poisson random variables is chosen. Next, p parameters §; are
generated randomly within certain range (a,b). Finally, one observation of
each the p distributions with 6; obtained in the first and second step is gen-
erated. Estimates of the parameters are calculated using the estimators §(X)
and §()(X), which are given by, respectively

vy (1 2(p—1)pd ,
‘5“")‘(1 a(pd +2p— 1) §=1<Xj+d))(x‘“) )
and
(X) = (1+8(X))(X +1)
where

_gl—zgh.-gx.-! Xz' < X(l)

ci D
®:i(X) = { _0=DhlXe) x5y
c.'D(,) ' = -

(4.2)

The entire steps are repeated 1000 times and the risks under the loss function
(1.2) for the estimators §(X) and §()(X) are calculated. The percentage of
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the savings in the risk using §()(X) are compared to the generalized Bayes
estimator 6°(X), using the formula

R(6,6°(X)) — R(6,69(X))

500 * 100. (4.3)

PRI(§M(X)) =

In table 1 and 2, we calculate the percentage improvement of §(X) in (4.1)
over §'(X) = X + 1 for the different values of d in §(z) when p = 2 and
p = 3 respectively. The percentage improvement decreases as the value of d
increases. That means when the magnitude of d’s increases, the denominator
of 6(X) becomes larger and so there is high possibility for §(X) to collapse
back to 6'(X). Therefore it is reasonable to consider the trimmed version
estimator like 6()(X) and 6*(X) in (3.7) and (3.12), respectively. In table 3
and 4, the percentage improvement over §'(X) = X + 1 are computed when
the estimators are trimmed at specified(/th) order statistics for the different
values of ¢;. The estimator 6§()(X) as defined in (4.2) stands for the shrinkage
estimator which is trimmed at Ith order statistic(l = 3,4,5,6,7, 8). In table
5, the percentage improvement of 6()(X) over 6§'(X) is computed for certain
values of 0;,...,05. We observe that the percentage improvement decreases as
the magnitude of the §;’s increases, which conforms to our intuition since 8(X)
and §¥)(X) shrink 6°(X) toward zero. It is also observed that the improvement
is always positive, which indicates that §¢)(X) is minimax.
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Table 1. PRI(6(X)) with p =2

range of the parameters =1
0; d=1 d=2 d=3 d=5 d=10
(0,1) 37.60 29.26 23.65 16.97 9.9
(0,2) 32.37 27.00 22.56 16.75 10.08
(0,4) 28.04 24.61 21.16 16.23 10.13
(4,8) 494 652 742 8.19 7.87
range of the parameters ¢ =1
0; d=1 d=2 d=3 d=5 d=10
(0,1) 25.83 20.06 16.19 11.61 6.76
(0,2) 2239 18.63 15.54 11.52 6.92
(0,4) 19.48 17.07 14.66 11.22 6.89
(4,8) 3.75 5.01 563 6.03 5.57

Table 2. PRI(6(X)) with p=5

range of the parameters =1
0; d=1 d=2 d=3 d=5 d=10
(0,1) 45.58 41.13 34.52 25.71 15.50
(0,2) 39.75 36.85 32.28 25.08 15.73
(0,4) 29.20 30.03 27.80 2297 15.35
(4,8) 10.78 12.56 13.20 13.62 12.73
range of the parameters ;=1
0; d=1 d=2 d=3 d=5 d=10
(0,1) 17.09 1439 1203 892 5.35
(0,2) 14.15 13.06 1139 8.79 548
(0,4) 10.42 10.74 996 8.12 537
(4,8) 444 560 596 595 5.09
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Table 3. PRI(6)(X)) with dy=1 and ¢; = 1

range of the parameters p=35 p=10
0; [=3|l=4]|l=5[l=6]1=7]1=8
(0,1) 3.55 | 5.11 [1.43 |2.07 [2.39 | 3.09
(0,2) 216 [4.97 [1.39 [1.09 |2.18 | 2.56
(0,4) 257 280 [1.26 {1.30 |1.28 1.24
(4,8) 0.70 ]0.78 {0.37 |0.37 [0.36 | 0.35
Table 4. PRI(§Y(X)) with dy =1 and ¢; = i
range of the parameters p=5 p=10
b; [=3|l=4|1=5|l=6]1=7]1=8
(0,1) 1.69 [ 1.69 |0.25 [0.37 | 0.44 | 0.56
(0,2) 1.22 | 1.73 ] 0.08 [0.22 {0.37 | 0.46
(0, 4) 0.91 1092 |0.23 |0.23 |0.23 | 0.22
(4,8) 0.24 |0.24 [0.06 |0.06 |{0.06 | 0.06
Table 5. PRI(6¥)(X)) with dy = 1
range of the parameters ¢ =1 c =1

0; =3 (=4 1=3 1=4

(1,1,1,1,1) 533 6.14 1.71 2.10

(0.8,1.6,2.4,3.2.4) 224 218 0.81 0.74

(5,5,5,5,5) 095 092 032 0.33

(4,5,6,7,8) 072 0.75 024 0.24




