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Local Remeshing Algorithm for Quasi-Static
Crack Propagation
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Abstract

A local remeshing algorithm using Delaunay property is developed for the analysis on the phenom-
enon of quast-static crack propagation, which is a typical problem of accompanying constantly varying
geometry. The algorithm performs both remeshing and refinement. The use of M-integral is
demonstrated to simulate crack propagation under mixed mode with the edge spalling problem.

1. Introduction (1) accurate evaluation of the stress intensity

factors(SIFs) (2) properly defined crack

Crack propagation has technical importance propagation criterion in mixed mode cracking

In many engineering design problems, es-
pecially for structures such as bridges or
power plants under seismic loading, Because of
its nature of constantly varying domain{bound-
ary) with time-marching, it draws attention
from many reseachers in the area of numerical
analysis.

In general, the following issues are discussed
in order to simulate the crack propagation :

(3) automatic local /global remeshing algor-
ithm to depict crack propagtion process, While
the first two issuses are related to fracture
mechanics, the third one is purely to numerical
technique. Since crack does not stay on the
present position but moves forward according
to the combination of SIFs, the simulation of
crack propagation must deal with constantly
varying geometry., Furthermore the variation
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is concentrated in the small region near crack
tip. Therefore it can be said that an appropri-
ate scheme representing moving crack front is
indispensible to study the phenomenon of
crack propagation,

In this regard, Fish and Nath[1] recently
proposed the interesting formulation. They
considered the cracked body as the superpo-
sition of ‘a discontinuous finite element field’
which contains unconstrained double nodes
along the discontinuity with the portions of
the finite element mesh ‘free of cracks’. Then
they simulated crack growth by automatically
remeshing the discontinuous field only while
keeping the other fixed(or the same as the in-
itial mesh). Pekau and Batta[2] used BEM for
the seismic crack propagation analysis of con-
crete structures, where crack propagation due
to dynamic effects is considered.

Provided that the crack advances in the
quasi-static manner, the present study is car-
ried out the above issues on crack propagation
by using FEM. Especially we have developed
the local remeshing scheme in crack front
zone. It has been pointed out[3] that
method,

whose generation algorithm is based on recur-

Delaunay-Voronoii triangulation
sive local remeshing schems, can be one of the
candidates. It does need only to define
remeshing region for new crack. In fact once
the crack increment and its orientation angle
are known, it automatically sets the crack
front zone and rediscretizes it. Accurate and
easy-to-be-implemented numerical schemes are
also discussed for the seperation of individual
stress intensity factors(SIFs) by using
so-called M-integral.

2. Mesh generation scheme for crack propa-
gation

2.1 General description of Delaunay triangu-
lation

In recent development of mesh generators
[4-12], not only the refining ability but also lo-
cal remeshing capability is required necessarily
for the preparation of such problems as large
deformation and crack propagation. In this re-
gard Delaunay triangultion is considered one of
the best choices since its generation algorithm
is based on recursive local remeshing schemes.
For a given set of N distinct points {P,, n=1,
2, - N}, Voronoii polygon Dj in 2-dimensional

space with repect to point P; is definded by

Di={x : d(x, P)<d(x, P)), V;#i} (1

where d(.,.) is an appropriate distance func-
tion. In the union D, of D;, i=1, 2, .- N, every
vertex point is shared by three polygons, and a
Delaunay triangulation is obtained connecting
those points. A very important property of
Delaunay trangulation is that the hypersphere
of Delaunay simplex does not contain any
points other than its own vertices, referred to
as the property of the empty sphere of
Delaunay triangulation[13].

When (k+1)th point P is added to the cur-
rent Delaunay triangulation T(k), revised
Delaunay triangulation T(k-+1) is obtained as
follow.

T(k+1)=(T(k) —B(p)) U[P, S(p)] (2)

where B(p) is a set of triangles whose
circumspheres contain the point P, S(p)
sequential boundary points of B(p), and [P, S
(p)] the triangles generated by connecting
lines radially from P to the points on S(p).

In this process, positioning a new point P
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has significance in every aspect of the pro-
cedure, i.e., 1) locations of the initial nodes
delineate problem domain and constitute the
boundary triangulation, 2) intervals of the in-
itial nodes provide implicit element density
function value at each node of which recipro-
cal indirectly controls element size, and 3) on
the interior, the locations are so determined
that densities are checked in the early stage
and shape regularities checked in the latter
part of mesh development,

Song[3] introduced adjacency array NEXT by
definition (3) and adjacency level as shown in
Fig. 1 with a couple of accompanying
algorithms{3, 14].

NEXT(, j) =adjacent element number (3)
facing i-the side of the element j

Fig. 1. Adjacency level for regular mesh

Array NEXT provides information about ad-
jacency among elements rather than proximity,
and when used with concept of adjacency level
it provides a very effective way of managing
screening process to find members of the block
B and constructing its boundary loop S. The
construction algorithms of the ball B and the
loop S are also used in identifying crack front
area and in preparing the path of J-integral in
the crack tip analysis.

2.2 Refinement scheme

Before entering to the discussion of mesh
generation scheme for the crack tip analysis,
clear difference between refining and
remeshing on a subdomain of the existing
mesh should be noticed. Refining a subdomain
is the process of deviding some of the old
ements on the domain, which is equivalent to
adding new nodes to the existing set of nodes
at devided location of the element sides. None
of the existing nodes are eliminated in the pro-
cess of refinement. On the other hand in
remeshing a subdomain, the interior nodes of a
subdomain are replaced completely by a new
set of nodes and elements,

Refinement scheme of a single core element
[14] in a regular mesh is considered first.
Three new nodes are created at midpoints of
its lateral sides. The number of elements
involved in refining a single core element is
four, core element itself and its three immedi-
ate adjacent elements, New nodes are inserted
into the block one by one, and elements are
regenerated according to the generation logic
(2). As a resuit of the refinement the core el-
ement is divided into four elements and three
adjacent elements are divided into six
elements, Refining sequence of a single core
element is shown graphically in Fig, 2.

ASAY

Refinement of several elements, 1n clustered
or individually, can be dealt with by simple
repetition of the same procedure. Special care
should be paid on the regularity after refine-
ment, Consider the refinement of a single core
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element of Fig. 3. The elements replacing the
core element retain the same order of regu-
larity as of the core element. New nodes(mid
side nodes of the core element) are connected
to five elements, which still can provide good
regularity after smoothing. But one of the ver-
tices of every adjacent element is connected to
one more element than before refinement.
Number of elements connected to the node is
likely to increase while refinement continues
around it(shown as revision area in Fig, 4).
The number of elements connected to a node
should be kept less than or equal to 8 to main-
tain shape regularity. Beyond this number
remeshing is necessary to replace degenerated
elements. Elininating the center node in the
revision area, unforced insertion of new nodes
is carried out until no more node is acceptible,

core element

v odaptive area

-=x
/r N

’ A .,
{ ) revision area
A /

\ /

S

Fig. 3. Refining(adaptive) area and remeshing(revision)
area

It has been shown that h-adaptive
refinemenet can be obtained by using the

above mentioned scheme(14].

2.3 Remeshing scheme

General mesh scheme for crack analysis
problems is such that fine enough meshes are
prepared around the crack tip, and the more
coarse the further away meshes are from the
tip. When the amount of crack advancement 6
and its orientation ¢ with respect to the crack
surface(the slit line) are given, remeshing is

necessary so that a new node is positioned at
the exact location of new crack tip and the slit
line is extended without being intersected by
the sides of the surrounding elements. As the
direction of the advance is toward where
meshes are coarse, mesh gradient in front of
the new crack tip becomes steep. In order to
ease the severity of density difference, the
bigger elements in revision area are refined be-
fore remeshing takes place. Following is a
summary of the key procedures of producing
better remeshing results in practice for crack
advancement,

1) Remeshing block is determined as shown
in Fig. 4. The center of the block is located at
the distance of 2.5 times the advancement §
from the old tip in the direction of new crack
orientation. The elements whose incenters are
within 56 from the center and whose adjacent
levels less than or equal to 8 are collected.
Elements on the back half plane devided by
the normal to the crack orientation are
excluded from the block.

2) Elements whose minimum side length is
less than 1.86 are refined before remeshing,
which are located further away from the tip in
general (Fig. 4). The process adjusts the den-
sity function values much less, almost in half,
than the previous ones for nodes on the per-
ipheral of the remeshing block. The adjust-

Fig. 4. Remeshing block and a priori refining
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ment enables the remeshing to provide smooth
element gradient between the crack tip area
and the exterior of the block.

3) After eliminating all the interior nodes of
the block, five new nodes are inserted con-
secutively at the distances incremented by
0.56 in the slit direction. The first two nodes
delineate the extended slit. One extra node is
put at mid-point of the slit extension for the
better path of J-integral in the new crack
orientation. The last three nodes are inserted
to provide fine enough elements ahead of the
crack tip. After forced insertions of 5 nodes,
unforce‘dl insertions follow as long as the
requested conditions for shape regularity and
density of the elements are not violated. Fig. 5
shows a sequence of insertions,

crock line

refined orec
® torced insertion

© unforced insertion

Fig. 5. Insertion of nodes for slit extension

4) Smoothing is carried out at every revision
of the crack tip area using the concept of
barycenter{14, 15]. Smoothing due to crack
tip remeshing includes such nodes as those
generated in a priori refinements, connected to
the refined elemtns, generated during
remeshing the block, and those of the adjacent
elements of the block. Global smoothing does
not always provide favorable situation. Local
smoothing is necessary as well as global one.
For example repeated application of global
smoothing tends to make large elements even
larger than before smoothing. Here local
smoothing is used extensively.

5) When the slit line is developed for a cer-

tain length or number of elements is too much
on the free edge of the crack, the whole slit

line can be rediscretized as shown in Fig. 6.

before rediscretization

after rediscretization

Fig. 6. Rediscretization of siit line

3. Determination of the angle of crack orien-
tation

3.1 Evaluation of Individual SIFs

Many ways to evaluate the crack extension
force are suggested. Among them, J-integral
proposed by Rice is now widely used because
it gives robust and accurate solutions regard-
less of mesh description,

The energy release rate E( ) is defined as
the rate of the total potential energy due to
crack extension, and can be written{16, 17] as
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E(0)=——5([, W d0)

when the boundary of the domain except crack
surface is fixed. Here £ denotes crack length
and thus d /d € implies the direction of crack
propagation. It also has been known that the
J-integral J has the relation

E(¢)=J=[_ {Wn—Tiéu/60}dr (4)

When the crack turns or curves under mixed
mode cracking, J-integral (4) can be computed
easily by using the chain rule

d/de=d/dxdx/de+d/dydy/de

The above J-integral method provides a
good approximation on the overall strength of
the crack-tip singularity. However it is not ob-
vious to find the opening and the shearing ef-
fects from the overall solution in the case of
mixed mode cracking. In order to predict the
individual SIF’s from the overall intensity,
M-integral proposed by [18] has been adopted.
It is defined as :

Miu, u?}= fr{l /2 oietoie;) — (Tiduw’ /08
+T# 0w /88 )} dl

where u, u® are the solutions of the actual
stress field and an auxiliary stress field, re-
spectively. Since the above M-integral has a
similar form to J-integral, the same J-integral
algorithm can be enough for their implemen-
tation. Note that M-integral has the orthog-
onal property of

Miu!, ul}=0

where u' and u" are the displacements in the
stress fields of pure modes Ki and Ky, re-

spectively. Since the actual field solution u is
written as the sum of, i.e. u=u'+u’, the fol-
lowing holds :

M{u=u'+u!, al}=C KA
M{u=u'+u!, a"}=C KA

where C is material proportionality, al and
a'! are auxiliary pure mode solutions corre-
sponding to SIFs Aj and Ap, respectively.
Here the solutions of the singular crack tip
field in linear elastic fracture are chosen such
that A; or Ap=1. Assumed that the
singularity is dominant near the crack tip, the
integral path is selected as close as possible to
crack tip. Its detail derivation can be referred

in [18].

3.2 Determination of crack orientation angle

In general, the crack under mixed mode
changes its direction according to certain com-
bination of individual SIFs, provided that the
crack instability is formed in the region
dominated by crack tip singularity. As for
determining the crack orientation angle, the
criteria of the maximum tensile stress or the
maximum strain energy density are mostly
used.

Here is adopted the maximum tensile strain
criterion{15], which postulates that the cir-
cumferential strain g at the crack tip becomes

the maximum. Indeed,

e=K /(2mr) £1(0)+Ky /~(2Znr) £1(6)

where 6 is the angle from the crack orien-
tation line. f' and f! are obtained from linear
elastic K; and Ky crack solutions, respect-

ively, so that
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£1(0)=1/(4E) {(3—5v) cos(6/2)+(1+v)
cos(30/2)

f1(0)=—1/W4E) {(3—5v) sin(8 /2)+3(1+v)
sin(30 /2)

Therefore the orientation angle # can be de-
termined such that g be the maximum, or Jdeg

/80=0 which leads to a cubic equation

2vK 1tan*(9 /2)+2(3+4v)K ytan’(9 /2)
—(3+v)Ktan(0/2) — (3+v)K =0

Note that the above equation implies that =0
when Kp=0, 6 is negative when Ky>0, and 6
is positive when K <0,

4. Numerical examples

4.1 Edge-cracking problem

As an example, an edge cracking problem of
homogeneous brittle material is chosen, whose
technical importance is mentioned as for
edge-machining in Thouless et al[19]. Fig. 7
shows a standard spalling problem where a
cracked body is under a compressive load on
the top of crack flank. The lower side wall is
considered as fixed.

In general, this problem is essentially under
the mixed mode cracking. Lateral compressive
load causes not only the shearing of crack
flank but the opening due to the offset of a
loading point from the neutral line where pure
shearing mode(Kj) exists. One of important
observations in such problems is that the
edge-crack propagates with a constant width
of crack flank(characteristic depth) from the
side surface during steady crack growth stage.
The spalling mechanism is well discussed by
Thouless et al. in [19].

r—fr »|>rj\ 709’ \Ld.
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Fig. 7. Numerical model for a spalling problem

4.2 Numerical model

Here the numerical analysis is performed to
find crack tip points due to crack advance. As
crack tip advances, crack may change its
orientation and eventually keeps the charac-
teristic depth when it reaches the steady
crack-growth state.

The following preocess is employed for the
numerical experiments :

Step 1 : Define and new crack tip region

Step 2 : Rediscretize the crack region

Step 3 : Solve the stress analysis

Step 4 : Compute individual stress intensity
factors

Step 5 : Evaluate the crack-advancing angle

Step 6 : Repeat 1—5 until the steady state
reaches

Although the crack growth is often dy-
namic, it is assumed quasi-static in the numeri-
cal model. The crack instability is assumed in
every crack increment ; that is, the overall
singularity strength at the crack tip is bigger
than the fracture toughness of the material.
For the assumed crack increments, the orien-
tation of crack-advancing angle is evaluated in
step 5. Here the increment was determined as
‘assumed length’ with a small value(1/18 of
the initial crack length) for our computational
convenience, In order for the increment to
have the meaning, it may be determined with
the time integration steps.
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4.3 Numerical results

Two cases of edge-cracking problems are
considered ; one with end wall of free bound-
ary and another with end wall of constraint in
x-direction. Indeed it appears that boundary
conditions of end wall affected the crack tip
orientation when the tip becomes closer to the
end wall. The dimensions of the problem con-
sidered are shown 1n Fig. 7.

The strength of stress intensity factors are
dictated by load P and its loading line(or the
distance from the free surface) h. Indeed it is
discussed in [19] that the stress intensity
factors in these problems are dependent on the
ratio between loading line(h) and flank width
(d). Pure opening mode(K j=0) appears at be-
tween h /d=5 and 6.1 according to the end
wall conditions by using numerical solutions,

Tables 1 and 2 demonstrate that the SIFs
and the orientation angle with repect to crack
increments in case of free end wall and sliding
While the
advancements at the beginning stage are very

wall, respectively. crack
similar in both cases, they show discrepancy
when the crack develops enough. At the be-
ginning the crack starts to grow downward
steeply(52°—53°) from the free upper side,
when the strong positive shear mode exists.
The crack of free wall tends to keep the angle
about 30° and thus the slanted crack is devel-
oped as the crack grows further(Fig. 8). No-
tice that the shear mode Ky almost vanishes,
which means that crack advances with the
same orientation angle with the previous step.
This result is quite different to the discussion
made in [19]. It may come from the finite size
effect of the domain. Indeed if the straight
crack of d/h=y5 in free end wall is considered
initially, the crack advances straight(Q°) to
keep its characteristic depth. Otherwise, there

seems to be no way to induce the negative

shear mode, since lower side wall is the only
boundary to resist the compressive load. The
overall crack intensity also keeps increasing as
the crack grows.

The crack of sliding wall has the tendency
to constantly turn its angle and eventually
reaches the ‘steady’ state(Fig. 8) where the
maximum crack depth is obtained as (d /h)max
=4.,72. However notice that the overall
crack singularity becomes to lose its intensity
as the crack grows,» which means that the
crack advancement may stop at a certain
point. Indeed when the crack is kept to grow
until it reaches to the side wall, it is found
that the problem becomes simply to the stand-
ing column subjected to compression because
the movement in x-direction is not allowed,

Fig. 9 and 10 show the distribution of
equivalent stress in case of sliding and free
end walls, respectively

Table 1. The SiFs and the orientation angle w.r.t. crack
increment step(free end wall)

Step Tip Angle Stress Intensity Factors
(°) Overall K; Ky,
1 0 15712 9236 12706
2 —45.3 17007 16331 1058
3 —52.6 16556 16168 —1578
4 —41.5 16848 16579 —138
5 —40.6 16319 16508 - 565
10 —-27.1 18534 18722 —302
15 —29.3 20608 20825 —515
20 —29.0 23660 23756 —964

Table 2. The SIFs and the orientation angle w.r.t. crack
increment step(sliding end wall)

Step Tip Angle Stress Intensity Factors
(°) Overall K, Ky,
1 0 15396 8656 12457
2 —45.5 15350 15078 1210
3 —54.5 15883 15133 —2356
4 -38.1 14404 14020 232
5 —40.1 14704 15470 —1355
10 —25.7 14019 14087 —9386
15 —5.6 13265 13336 —500
22 -0.14 12155 12329 —93

—174—



23

Arzsetsl Al 7 Al 3 2 (1994, 8)

Song, Young Joon - Koh, Byeong Cheon

Fig. 8. Crack growth of the model(sliding end wall)

Fig. 10. Distribution of equivalent stress(free end wall)

5. Conclusions

In the present study. the numerical schemes
to simulate crack propagation are proposed :

the recursive local remeshing scheme by using
the Delaunay triangulation to simulate con-
stantly varying domain and accurate evalu-
ation of SIFs by using M-integral. The use of
the adjacency array NEXT and the suggested
algorithms make it possible to accomodate
changing crack tip area by identifying
remeshing block B and its boundary nodes S
instantaneously when needed anywhere in the
domain, The local remeshing scheme is es-
pecially useful in the large deformation
problems such as back extrusion where the de--
formation of the given geometry(or boundary)
1s concentrated in a local region,

However the discussions on crack propa-
gation here are limited to quasi-static
problems. Since in reality the brittle crack
propagates dynamically, further development
must be able to deal with the accompanying dy-
namic effect which leads that time integration
scheme is necessary. To estimate the accurate
time increment, the predictor-corrector algor-
ithm may be needed. In addition, the
generalizations of J-integral and M-integral are
also required for evaluating correctly SIFs by
the effects of dynamic load.
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