The effect of Phosphorus on the Formaion of Ta-silicide film by RTA)

급속열처리시 Ta-silicide박막 형성에 미치는 불순물 인의 영향

  • Published : 1994.12.01

Abstract

Ta-silicide films in polycide structure were prepared by rapid thermal annealing of sputtered Ta film on poly-Si and doped poly-Si. Effects of phosphorus on Ta-silicide formation were investigated. Independent of the ion dose($1 \times 10^{13}\to 5 \times 10^{15}$/ions/$\textrm{cm}^2$), Ta-silicide phases were formed at $800^{\circ}C$ and stabilized above $1000^{\circ}C$. From the result of XRD at $800^{\circ}C$ and $900^{\circ}C$, however, it was indicated that the more the doping concentration the weaker the intensity of Ta-silicide phases. Furthermore, the observation of SEM revealed that the increase of the doping concentration retarded silicidation. As the temperature increased, the dopant effect was weakened gradually and almost disappeared at $1000^{\circ}C$. Therefore the variation of the ion dose from ($1 \times 10^{13}\to 5 \times 10^{15}$/ions/$\textrm{cm}^2$) did not greatly affect the formation of Ta-silicide at high temperatures but retarded slightly the silicidation at low temperatures.

Polycide구조로서의 Ta-silicide박막을 제작하고 Polysilicon기판에 주입된 불순물 양의 변화가 Ta-silicide형성에 미치는 영향을 조사하였다. RTA처리시 Ta silicide상은 불순물 양의 증가($1 \times 10^{13}\to 5 \times 10^{15}$/ions/$\textrm{cm}^2$)에 관계없이 $800^{\circ}C$에서 형성되기 시작하여 $1000^{\circ}C$이후 안정한 silicide박막을 형성하였다. 그러나 XRD분석결과 불순물 양이 증가할수록 Ta-silicide상의 intensity는 감소하는 경향을 나타내었고 또 SEM(cross sectional view)분석결과 silicide 형성초기온도인 $800^{\circ}C$에서는 불순물 양이 많은 시편에서 silicidation이 활발히 진척되지 못하였음을 관찰할 수 있었다. 이후 열처리 온도가 증가하면서 이러한 차이는 적어져 $1000^{\circ}C$에서는 불순물의 증가에 따른 영향이 미세해짐을 알 수 있었다. 따라서 주입된 불순물 양의 증가($1 \times 10^{13}\to 5 \times 10^{15}$/ions/$\textrm{cm}^2$)는 Ta-silicide형성시 고온에서는 큰 영향을 미치지 못하나 silicide형성초기온도에서 silicidation을 감소시키는 것으로 생각된다.

Keywords

References

  1. IEEE Trans. Electron Devices v.ED-27 no.1409 S.P. Murarka;D.B. Fraser;A.K. Shinha;H.J. Levinstein
  2. VLSI Technology v.376 Sze
  3. IEEE Trans. Electron Devices v.ED-34 no.659 W. Hosse;J. Schulte;J. Grau
  4. Silicides for VLSI applications S.P. Murarka
  5. J. Vac. Sci. Technol. v.B no.1 J.S. Maa;C.W. Magee;J.J. O’Neill
  6. J. Electron. Mater. v.12 no.667 T.J. Hwang;S.H. Rogers;B.Z. Li
  7. J. Appl. Phys. v.61 no.11 R. Beyers;Don Coulman;Paul Merchant
  8. J. Appl. Phys. v.61 no.11 V.L. Teal;S.P. Murarka
  9. J. Appl. Phys. v.54 no.3 J. Pelleg;S.P. Murarka
  10. J. Appl. Phys. v.54 no.10 S. Luryi;N. Lifshitz
  11. J. Appl. Phys. v.70 no.2 V. Probst;H. Schaber;A. Mitwalsky;H. Kabza;B. Hoffmah
  12. J. Vac. Sci. Technol. v.A2 no.2 H.K. Park;J. Sachitano;M. McPheraon;T. Yamaguchi;G. Lehman
  13. J. Vac. Sci. Technol. v.B no.6 Menachem Natan;Steven C. Shatas